
Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions, Bar Recursion
and Nash Equilibrium

Paulo Oliva

Queen Mary, University of London, UK

(based on joint work with Mart́ın Escardó)

British Logic Colloquium

Swansea, 4 September 2009

1 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Backward Induction

4 Bar Recursion

2 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Backward Induction

4 Bar Recursion

3 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Usual quantifiers

∃X ,∀X : (X → B)→ B

Some operations of this type:

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

4 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Usual quantifiers (R = B)

∃X ,∀X : (X → R)→ R

Some operations of this type:

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

4 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Usual quantifiers (R = B)

∃X ,∀X : (X → R)→ R

Some operations of this type:

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

4 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Definition (Generalised Quantifiers)

Let us call operations φ of type

(X → R)→ R

generalised quantifiers. Write KRX :≡ (X → R)→ R.

Definition (Product of Generalised Quantifiers)

Given quantifiers φ : KRX and ψ : KRY define the product
quantifier φ⊗ ψ : KR(X × Y) as

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

5 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Definition (Generalised Quantifiers)

Let us call operations φ of type

(X → R)→ R

generalised quantifiers. Write KRX :≡ (X → R)→ R.

Definition (Product of Generalised Quantifiers)

Given quantifiers φ : KRX and ψ : KRY define the product
quantifier φ⊗ ψ : KR(X × Y) as

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

5 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Generalised Quantifiers

What does

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

mean?

Exactly what you would expect, namely

(∃X ⊗ ∀Y)(pX×Y→B)
B≡ ∃xX∀yY p(x, y)

(sup⊗
∫

)(p[0,1]2→R)
R≡ supx

∫ 1

0
p(x, y)dy

6 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Generalised Quantifiers

Generalised Quantifiers

What does

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

mean?

Exactly what you would expect, namely

(∃X ⊗ ∀Y)(pX×Y→B)
B≡ ∃xX∀yY p(x, y)

(sup⊗
∫

)(p[0,1]2→R)
R≡ supx

∫ 1

0
p(x, y)dy

6 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Backward Induction

4 Bar Recursion

7 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Maximum Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

8 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Maximum Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

8 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(aka “Drinker’s paradox”).

9 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(aka “Drinker’s paradox”).

9 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Let JRX :≡ (X → R)→ X.

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KRX is called attainable if it has
a selection function ε : JRX.

10 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Let JRX :≡ (X → R)→ X.

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KRX is called attainable if it has
a selection function ε : JRX.

10 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Let JRX :≡ (X → R)→ X.

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KRX is called attainable if it has
a selection function ε : JRX.

10 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

For Instance

Any fixed point operator

fix : (X → X)→ X

is an attainable quantifier, and a selection function.

In fact, the fixed point equation

fix p = p(fix p)

says that fix is its own selection function.

11 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

A Mapping JR 7→ KR

Not all quantifiers are attainable, but every element

ε : JRX

is a selection function for some attainable quantifier, namely

ε : KRX

defined as

εp
R
:= p(εp).

So, we call all elements ε : JX “selection functions”.

12 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Questions

Is “being attainable” closed under finite product?

What about countable product?

Yes! We define a product of selection functions such that

ε⊗ δ = ε⊗ δ

13 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Questions

Is “being attainable” closed under finite product?

What about countable product?

Yes! We define a product of selection functions such that

ε⊗ δ = ε⊗ δ

13 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Definition (Product of Selection Functions)

Given selection functions ε : JRX and δ : JRY define a
product selection function

ε⊗ δ : JR(X × Y)

as

(ε⊗ δ)(pX×Y→R)
X×Y
:= (a, b(a))

where
a := ε(λx.p(x, b(x)))

b(x) := δ(λy.p(x, y)).

14 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X

Y R Y

15 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X

Y R Y
px(y) b(x)

15 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X
p(x, b(x)) a

Y R Y
px(y) b(x)

15 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X
p(x, b(x)) a

Y R Y
pa(y) b(a)

15 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Quantifier Elimination

Suppose ∃n p(~v, n) = p(~v, ε(λn.p(~v, n)).

Then

∃x∃y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where

b(x) = ε(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ ε)(p) = (a, b(a)).

16 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Quantifier Elimination

Suppose ∃n p(~v, n) = p(~v, ε(λn.p(~v, n)). Then

∃x∃y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = ε(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ ε)(p) = (a, b(a)).

16 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Quantifier Elimination

Suppose ∃n p(~v, n) = p(~v, ε(λn.p(~v, n)). Then

∃x∃y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = ε(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ ε)(p) = (a, b(a)).

16 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Quantifier Elimination

Suppose ∃n p(~v, n) = p(~v, ε(λn.p(~v, n)). Then

∃x∃y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = ε(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ ε)(p) = (a, b(a)).

16 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Bekic’s lemma

Lemma

If X and Y have fixed point operators then so does X × Y .

17 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X

Y

X X

Y Y

fixX

fixY

17 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X XX ×Y

Y YX ×Y

fixX

fixY

17 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X X
p(x, b(x)) a

X ×Y

Y Y
b(a)

X ×Y
pa(y)

fixX

fixY

17 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Backward Induction

4 Bar Recursion

18 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (simultaneous games)

n players, each with a set of “strategies” Xi

payoff function f : Πn−1
i=0 Xi → Rn

strategy profile (x0, . . . , xn−1) : Πn−1
i=0 Xi

equilibrium strategy profile if for i = 0, . . . , n− 1

∀x∗i (fi(x0, . . . , x
∗
i , . . . , xn−1) ≤ fi(x0, . . . , xi, . . . , xn−1))

pure equilibria not always exist, but mixed ones do

consider, however, that the game is played sequentially

19 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (simultaneous games)

n players, each with a set of “strategies” Xi

payoff function f : Πn−1
i=0 Xi → Rn

strategy profile (x0, . . . , xn−1) : Πn−1
i=0 Xi

equilibrium strategy profile if for i = 0, . . . , n− 1

∀x∗i (fi(x0, . . . , x
∗
i , . . . , xn−1) ≤ fi(x0, . . . , xi, . . . , xn−1))

pure equilibria not always exist, but mixed ones do

consider, however, that the game is played sequentially

19 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (simultaneous games)

n players, each with a set of “strategies” Xi

payoff function f : Πn−1
i=0 Xi → Rn

strategy profile (x0, . . . , xn−1) : Πn−1
i=0 Xi

equilibrium strategy profile if for i = 0, . . . , n− 1

∀x∗i (fi(x0, . . . , x
∗
i , . . . , xn−1) ≤ fi(x0, . . . , xi, . . . , xn−1))

pure equilibria not always exist, but mixed ones do

consider, however, that the game is played sequentially

19 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (for sequential games)

E.g. three players, payoff function f : X × Y × Z → R3

f(x0, y0, z0) = (0,1,2)
f(x0, y0, z1) = (2,1,1)
f(x0, y1, z0) = (3,0,2)
f(x0, y1, z1) = (1,3,0)
f(x1, y0, z0) = (0,1,0)
f(x1, y0, z1) = (2,1,1)
f(x1, y1, z0) = (2,2,1)
f(x1, y1, z1) = (3,0,2)

20 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (for sequential games)

E.g. three players, payoff function f : X × Y × Z → R3

f(x0, y0, z0) = (0,1,2)
f(x0, y0, z1) = (2,1,1)
f(x0, y1, z0) = (3,0,2)
f(x0, y1, z1) = (1,3,0)
f(x1, y0, z0) = (0,1,0)
f(x1, y0, z1) = (2,1,1)
f(x1, y1, z0) = (2,2,1)
f(x1, y1, z1) = (3,0,2)

20 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (for sequential games)

E.g. three players, payoff function f : X × Y × Z → R3

f(x0, y0, z0) = (0,1,2)
f(x0, y0, z1) = (2,1,1)
f(x0, y1, z0) = (3,0,2)
f(x0, y1, z1) = (1,3,0)
f(x1, y0, z0) = (0,1,0)
f(x1, y0, z1) = (2,1,1)
f(x1, y1, z0) = (2,2,1)
f(x1, y1, z1) = (3,0,2)

20 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Nash equilibrium (for sequential games)

E.g. three players, payoff function f : X × Y × Z → R3

f(x0, y0, z0) = (0,1,2)
f(x0, y0, z1) = (2,1,1)
f(x0, y1, z0) = (3,0,2)
f(x0, y1, z1) = (1,3,0)
f(x1, y0, z0) = (0,1,0)
f(x1, y0, z1) = (2,1,1)
f(x1, y1, z0) = (2,2,1)
f(x1, y1, z1) = (3,0,2)

20 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Backward Induction

Selection functions in this case are

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
for (x ∈ Xi) do

if p(x) has maximal i-coordinate return x
}

Product (
n−1⊗
i=0

argmaxi

)
(f)

computes “optimal play”, and can be used to calculate
strategy profile in Nash equilibrium.

21 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Backward Induction

Backward Induction

Selection functions in this case are

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
for (x ∈ Xi) do

if p(x) has maximal i-coordinate return x
}

Product (
n−1⊗
i=0

argmaxi

)
(f)

computes “optimal play”, and can be used to calculate
strategy profile in Nash equilibrium.

21 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Backward Induction

4 Bar Recursion

22 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of
selection functions and quantifiers!

In other words, define infinite product as⊗
k

(ε) = εk ⊗ (
⊗
k+1

(ε)).

where ε : Πk∈NJR(Xk).

Then (intuitively)

BR(ε, p, s) =
⊗
|s|

(ε)(ps).

23 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of
selection functions and quantifiers!

In other words, define infinite product as⊗
k

(ε) = εk ⊗ (
⊗
k+1

(ε)).

where ε : Πk∈NJR(Xk).

Then (intuitively)

BR(ε, p, s) =
⊗
|s|

(ε)(ps).

23 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of
selection functions and quantifiers!

In other words, define infinite product as⊗
k

(ε) = εk ⊗ (
⊗
k+1

(ε)).

where ε : Πk∈NJR(Xk).

Then (intuitively)

BR(ε, p, s) =
⊗
|s|

(ε)(ps).

23 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Two points

Point 1. Infinite products not always (uniquely) defined.

Recursive equation uniquely defines a function in the model of
continuous functionals.

But it does not on the full set theoretic model.

Point 2. There are several variants of bar recursion, but only
two binary products have been defined?

Product of quant. 7→ Spector BR [Spector’62]

Product of s.f. 7→ Course-of-value BR [Escardo/O.’09]

Skewed product 7→ Modified BR [Berger/O.’06]

Symmetric product 7→ BBC [Berardi et al’98]

24 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Two points

Point 1. Infinite products not always (uniquely) defined.

Recursive equation uniquely defines a function in the model of
continuous functionals.

But it does not on the full set theoretic model.

Point 2. There are several variants of bar recursion, but only
two binary products have been defined?

Product of quant. 7→ Spector BR [Spector’62]

Product of s.f. 7→ Course-of-value BR [Escardo/O.’09]

Skewed product 7→ Modified BR [Berger/O.’06]

Symmetric product 7→ BBC [Berardi et al’98]

24 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Spector Bar recursion

Iterated product of quantifiers⊗
k

(φ) = φk ⊗ (
⊗
k+1

(φ))

in general fails to exist (even assuming continuity).

Spector’s original bar recursion corresponds to a
“conditional” iterated product

⊗
k

(φ)(p)
N
=

{
p(0) if p(0) < k

(φk ⊗ (
⊗

k+1(φ)))(p) otherwise.

Ps.: Actually, Spector uses dependent products – c.f. paper.

25 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Spector Bar recursion

Iterated product of quantifiers⊗
k

(φ) = φk ⊗ (
⊗
k+1

(φ))

in general fails to exist (even assuming continuity).

Spector’s original bar recursion corresponds to a
“conditional” iterated product

⊗
k

(φ)(p)
N
=

{
p(0) if p(0) < k

(φk ⊗ (
⊗

k+1(φ)))(p) otherwise.

Ps.: Actually, Spector uses dependent products – c.f. paper.

25 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

26 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

26 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

26 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

Not Mentioned but Very Interesting

Connection to classical logic
Finite product of quantifiers witnesses dialectica
interpretation of IPHP

General notion of game
Optimal strategies as products of selection functions
History dependent games, dependent products

Relation to monads
K, J are strong monads, ε 7→ ε a monad morphism

Interdefinability between bar recursions
E.g. “normal” product = “skewed” product

27 / 28

Selection Functions, Bar Recursion and Nash Equilibrium

Bar Recursion

For more information see:

Selection functions, bar recursion and backward induction

M. Escardo and P. Oliva, Submitted, July 2009

Preprint available from my webpage.

Instances of bar recursion as iterated products of selection
functions and quantifiers

M. Escardo and P. Oliva, In preparation.

28 / 28

	Main Part
	Generalised Quantifiers
	Selection Functions
	Backward Induction
	Bar Recursion

