Selection Functions, Bar Recursion and Nash Equilibrium

Paulo Oliva

Queen Mary, University of London, UK (based on joint work with Martín Escardó)

British Logic Colloquium Swansea, 4 September 2009

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

1/28

Outline

2 Selection Functions

Outline

2 Selection Functions

Usual quantifiers

 $\exists_X, \forall_X : (X \to \mathbb{B}) \to \mathbb{B}$

Usual quantifiers $(R = \mathbb{B})$

$$\exists_X, \forall_X : (X \to R) \to R$$

Usual quantifiers $(R = \mathbb{B})$

$$\exists_X, \forall_X : (X \to R) \to R$$

Some operations of this type:

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

イロト イポト イヨト イヨト 二日

Definition (Generalised Quantifiers)

Let us call operations ϕ of type

$$(X \to R) \to R$$

generalised quantifiers. Write $K_R X := (X \to R) \to R$.

Definition (Generalised Quantifiers)

Let us call operations ϕ of type

$$(X \to R) \to R$$

generalised quantifiers. Write $K_R X := (X \to R) \to R$.

Definition (Product of Generalised Quantifiers)

Given quantifiers $\phi: K_R X$ and $\psi: K_R Y$ define the **product** quantifier $\phi \otimes \psi: K_R(X \times Y)$ as

$$(\phi \otimes \psi)(p) :\stackrel{R}{=} \phi(\lambda x^{X} . \psi(\lambda y^{Y} . p(x, y)))$$

(日) (周) (王) (王) (王)

where $p: X \times Y \to R$.

Generalised Quantifiers

What does

$$(\phi \otimes \psi)(p) :\stackrel{R}{=} \phi(\lambda x^{X}.\psi(\lambda y^{Y}.p(x,y)))$$

mean?

Generalised Quantifiers

What does

$$(\phi \otimes \psi)(p) \stackrel{R}{:=} \phi(\lambda x^X . \psi(\lambda y^Y . p(x, y)))$$

mean?

Exactly what you would expect, namely

$$(\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}}) \stackrel{\mathbb{B}}{\equiv} \exists x^X \forall y^Y p(x, y) (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}}) \stackrel{\mathbb{R}}{\equiv} \sup_x \int_0^1 p(x, y) dy$$

Outline

2 Selection Functions

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$\int_0^1 p = p(a)$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\int_{0}^{1} p = p(a)$

Theorem (Maximum Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\sup p = p(a)$

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$\exists x^X p(x) \iff p(a)$$

(similar to Hilbert's ε -term).

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\exists x^X p(x) \iff p(a)$

(similar to Hilbert's ε -term).

Theorem (Counter-example Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\forall x^X p(x) \iff p(a)$

(aka "Drinker's paradox").

9/28

(日) (종) (종) (종) (종)

Let $J_R X :\equiv (X \to R) \to X$.

Let
$$J_R X :\equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 ε : $J_R X$ is called a **selection function** for ϕ : $K_R X$ if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p: X \to R$.

Let
$$J_R X :\equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 ε : $J_R X$ is called a **selection function** for ϕ : $K_R X$ if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p: X \to R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi: K_R X$ is called **attainable** if it has a selection function $\varepsilon: J_R X$.

For Instance

Any fixed point operator

fix :
$$(X \to X) \to X$$

is an attainable quantifier, and a selection function.

In fact, the fixed point equation

fix
$$p = p(\text{fix } p)$$

says that fix is its own selection function.

A Mapping
$$J_R \mapsto K_R$$

Not all quantifiers are attainable, but every element

 ε : $J_R X$

is a selection function for some attainable quantifier, namely

$$\overline{\varepsilon}$$
 : $K_R X$

defined as

$$\overline{\varepsilon}p := p(\varepsilon p).$$

So, we call all elements ε : JX "selection functions".

Questions

Is "being attainable" closed under finite product? What about countable product?

Questions

Is "being attainable" closed under finite product? What about countable product?

Yes! We define a product of selection functions such that

$$\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$$

Definition (Product of Selection Functions)

Given selection functions $\varepsilon \colon J_R X$ and $\delta \colon J_R Y$ define a product selection function

$$\varepsilon \otimes \delta$$
 : $J_R(X \times Y)$

as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (a, b(a))$$

$$a := \varepsilon(\lambda x.p(x,b(x)))$$

$$b(x) := \delta(\lambda y.p(x,y)).$$

Product of Selection Functions

Product of Selection Functions

Product of Selection Functions

Product of Selection Functions

Quantifier Elimination

Suppose $\exists n \ p(\vec{v}, n) = p(\vec{v}, \varepsilon(\lambda n. p(\vec{v}, n))).$

Quantifier Elimination

Suppose
$$\exists n \ p(\vec{v}, n) = p(\vec{v}, \varepsilon(\lambda n. p(\vec{v}, n)))$$
. Then
 $\exists x \exists y \ p(x, y) = \exists x \ p(x, b(x))$

$$b(x) = \varepsilon(\lambda y.p(x,y))$$

Quantifier Elimination

Suppose
$$\exists n \ p(\vec{v}, n) = p(\vec{v}, \varepsilon(\lambda n. p(\vec{v}, n)))$$
. Then
 $\exists x \exists y \ p(x, y) = \exists x \ p(x, b(x))$
 $= p(a, b(a))$

$$\begin{aligned} b(x) &= \varepsilon(\lambda y.p(x,y)) \\ a &= \varepsilon(\lambda x.p(x,b(x))). \end{aligned}$$

Quantifier Elimination

Suppose
$$\exists n \ p(\vec{v}, n) = p(\vec{v}, \varepsilon(\lambda n. p(\vec{v}, n)))$$
. Then
 $\exists x \exists y \ p(x, y) = \exists x \ p(x, b(x))$
 $= p(a, b(a))$

$$\begin{split} b(x) &= \varepsilon(\lambda y.p(x,y))\\ a &= \varepsilon(\lambda x.p(x,b(x))).\\ \end{split}$$
 In fact, $(\varepsilon\otimes\varepsilon)(p) = (a,b(a)).$

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Bekic's lemma

 $p\colon X\times Y\to X\times Y$

Bekic's lemma

 $p\colon X\times Y\to X\times Y$

Bekic's lemma

 $p\colon X\times Y\to X\times Y$

Backward Induction

Outline

Generalised Quantifiers

2 Selection Functions

Nash equilibrium (simultaneous games)

- n players, each with a set of "strategies" X_i
- payoff function $f: \prod_{i=0}^{n-1} X_i \to \mathbb{R}^n$
- strategy profile (x_0, \ldots, x_{n-1}) : $\prod_{i=0}^{n-1} X_i$

Nash equilibrium (simultaneous games)

- n players, each with a set of "strategies" X_i
- payoff function $f: \prod_{i=0}^{n-1} X_i \to \mathbb{R}^n$
- strategy profile $(x_0, \ldots, x_{n-1}) \colon \prod_{i=0}^{n-1} X_i$
- equilibrium strategy profile if for $i = 0, \dots, n-1$ $\forall x_i^*(f_i(x_0, \dots, x_i^*, \dots, x_{n-1}) \leq f_i(x_0, \dots, x_i, \dots, x_{n-1}))$

19/28

Nash equilibrium (simultaneous games)

- n players, each with a set of "strategies" X_i
- payoff function $f: \prod_{i=0}^{n-1} X_i \to \mathbb{R}^n$
- strategy profile $(x_0, \ldots, x_{n-1}) \colon \prod_{i=0}^{n-1} X_i$
- equilibrium strategy profile if for $i = 0, \dots, n-1$ $\forall x_i^*(f_i(x_0, \dots, x_i^*, \dots, x_{n-1}) \leq f_i(x_0, \dots, x_i, \dots, x_{n-1}))$
- pure equilibria not always exist, but mixed ones do
- consider, however, that the game is played sequentially

Nash equilibrium (for sequential games)

E.g. three players, payoff function $f: X \times Y \times Z \to \mathbb{R}^3$

Nash equilibrium (for sequential games)

E.g. three players, payoff function $f: X \times Y \times Z \to \mathbb{R}^3$

Nash equilibrium (for sequential games)

E.g. three players, payoff function $f: X \times Y \times Z \to \mathbb{R}^3$

Nash equilibrium (for sequential games)

E.g. three players, payoff function $f: X \times Y \times Z \to \mathbb{R}^3$

イロト イポト イヨト イヨト

Backward Induction

Selection functions in this case are

 $\begin{array}{ll} \operatorname{argmax}_{i}(p) \left\{ & \left[\operatorname{argmax}_{i} \colon (X_{i} \to \mathbb{R}^{n}) \to X_{i}\right] \\ \text{for } (x \in X_{i}) \text{ do} \\ & \text{if } p(x) \text{ has maximal } i\text{-coordinate return } x \end{array} \right\} \end{array}$

Backward Induction

Selection functions in this case are

```
\begin{array}{ll} \operatorname{argmax}_{i}(p) \left\{ & \left[\operatorname{argmax}_{i} \colon (X_{i} \to \mathbb{R}^{n}) \to X_{i}\right] \\ \text{for } (x \in X_{i}) \text{ do} \\ & \text{if } p(x) \text{ has maximal } i\text{-coordinate return } x \end{array} \right\} \end{array}
```

Product

$$\left(\bigotimes_{i=0}^{n-1}\operatorname{argmax}_i\right)(f)$$

computes "optimal play", and can be used to calculate strategy profile in Nash equilibrium.

Outline

Generalised Quantifiers

2 Selection Functions

Backward Induction

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of selection functions and quantifiers!

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of selection functions and quantifiers!

In other words, define infinite product as

$$\bigotimes_{k}(\varepsilon) = \varepsilon_k \otimes (\bigotimes_{k+1}(\varepsilon)).$$

where $\varepsilon \colon \prod_{k \in \mathbb{N}} J_R(X_k)$.

Bar recursion = infinite product

Bar recursion is simply the countable iteration of product of selection functions and quantifiers!

In other words, define infinite product as

$$\bigotimes_{k}(\varepsilon) = \varepsilon_k \otimes (\bigotimes_{k+1}(\varepsilon)).$$

where $\varepsilon \colon \prod_{k \in \mathbb{N}} J_R(X_k)$.

Then (intuitively)

$$\mathsf{BR}(\varepsilon, p, s) = \bigotimes_{|s|} (\varepsilon)(p_s).$$

イロン イボン イモン イモン 一日

Two points

Point 1. Infinite products not always (uniquely) defined.

Recursive equation uniquely defines a function in the model of *continuous functionals*.

But it does not on the full set theoretic model.

Two points

Point 1. Infinite products not always (uniquely) defined. Recursive equation uniquely defines a function in the model of

continuous functionals.

But it does not on the full set theoretic model.

Point 2. There are several variants of bar recursion, but only two binary products have been defined?

Product of quant. → Spector BR [Spector'62]

- **Product of s.f.** \mapsto Course-of-value BR [Escardo/O.'09]
- Skewed product \mapsto Modified BR [Berger/O.'06]
- *Symmetric product* → BBC [Berardi et al'98]

イロン イボン イモン イモン 一日

Spector Bar recursion

Iterated product of quantifiers

$$\bigotimes_{k}(\phi) = \phi_k \otimes (\bigotimes_{k+1}(\phi))$$

in general fails to exist (even assuming continuity).

Spector Bar recursion

Iterated product of quantifiers

$$\bigotimes_{k}(\phi) = \phi_k \otimes (\bigotimes_{k+1}(\phi))$$

in general fails to exist (even assuming continuity).

Spector's original bar recursion corresponds to a "conditional" iterated product

$$\bigotimes_{k} (\phi)(p) \stackrel{\mathbb{N}}{=} \begin{cases} p(\mathbf{0}) & \text{if } p(\mathbf{0}) < k \\ (\phi_{k} \otimes (\bigotimes_{k+1}(\phi)))(p) & \text{otherwise.} \end{cases}$$

Ps.: Actually, Spector uses dependent products - c.f. paper.

) Q (~ 25 / 28

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)$$

corresponds to the type

$$\Pi_n((A_n \to \bot) \to \bot) \to (\Pi_n A_n \to \bot) \to \bot.$$

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)$$

corresponds to the type

$$\Pi_n((A_n \to \bot) \to \bot) \to (\Pi_n A_n \to \bot) \to \bot.$$

If $\bot \to A_n$, this is equivalent to

$$\Pi_n((A_n \to \bot) \to A_n) \to (\Pi_n A_n \to \bot) \to \Pi_n A_n$$

i.e.
$$\Pi_n J(A_n) \to J(\Pi_n A_n).$$

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)$$

corresponds to the type

$$\Pi_n((A_n \to \bot) \to \bot) \to (\Pi_n A_n \to \bot) \to \bot.$$

If $\bot \to A_n$, this is equivalent to

$$\Pi_n((A_n \to \bot) \to A_n) \to (\Pi_n A_n \to \bot) \to \Pi_n A_n$$

i.e. $\Pi_n J(A_n) \to J(\Pi_n A_n).$

The type of the countable product of selection functions!

Selection Functions, Bar Recursion and Nash Equilibrium

Not Mentioned but Very Interesting

- Connection to **classical logic** Finite product of quantifiers witnesses dialectica interpretation of IPHP
- General notion of game
 Optimal strategies as products of selection functions
 History dependent games, dependent products
- Relation to monads

K, J are strong monads, $\varepsilon \mapsto \overline{\varepsilon}$ a monad morphism

イロン イボン イモン イモン 一日

Interdefinability between bar recursions
 E.g. "normal" product = "skewed" product

For more information see:

Selection functions, bar recursion and backward induction M. Escardo and P. Oliva, Submitted, July 2009 Preprint available from my webpage.

Instances of bar recursion as iterated products of selection functions and quantifiers

M. Escardo and P. Oliva, In preparation.

