Realizability Interpretations of Linear Logic

Paulo Oliva
Queen Mary, University of London, UK
(based on joint work with G. Ferreira and J. Gaspar)

Chambéry, 3 June 2009

Outline

(1) Realizability (a reformulation)
(2) Linear Logic (a model)
(3) Functional Interpretations of LL
(4) Functional Interpretations of ILL

Outline

(1) Realizability (a reformulation)
(2) Linear Logic (a model)
(3) Functional Interpretations of LL
(4) Functional Interpretations of ILL

Realizability

$$
\begin{array}{rll}
\langle x, y\rangle & \operatorname{mr} A \wedge B & : \equiv(x \mathrm{mr} A) \wedge(y \mathrm{mr} B) \\
\langle x, y, i\rangle & \mathrm{mr} A \vee B & : \equiv(x \mathrm{mr} A) \diamond_{i}(y \mathrm{mr} B) \\
f & \mathrm{mr} A \rightarrow B & : \equiv \forall x((x \mathrm{mr} A) \rightarrow(f x \mathrm{mr} B)) \\
\langle x, n\rangle & \operatorname{mr} \exists z A & : \equiv x \mathrm{mr} A[n / z] \\
f & \mathrm{mr} \forall z A & : \equiv \forall z(f z \mathrm{mr} A)
\end{array}
$$

where $A \diamond_{i} B: \equiv(i=0 \rightarrow A) \wedge(i=1 \rightarrow B)$.

Realizability

Realizability associates a formula A to a set of functionals (e.g. in Gödel's T)

$$
S_{A}: \equiv\{t:(t \in \mathrm{~T}) \wedge(t \operatorname{mr} A)\}
$$

such that A is provable iff S_{A} is non-empty.

Realizability

Realizability associates a formula A to a set of functionals (e.g. in Gödel's T)

$$
S_{A}: \equiv\{t:(t \in \mathrm{~T}) \wedge(t \operatorname{mr} A)\}
$$

such that A is provable iff S_{A} is non-empty.
Realizability is a proof interpretation:

$$
\vdash_{\pi} A \quad \Rightarrow \quad t_{\pi} \in S_{A}
$$

Pointwise realizability

Can also be viewed as associating formulas to relations

$$
\begin{aligned}
& \langle x, v\rangle \operatorname{pmr}_{y, w} A \wedge B \quad: \equiv\left(x \operatorname{pmr}_{y} A\right) \wedge\left(v \operatorname{pmr}_{w} B\right) \\
& \langle x, v, i\rangle \mathrm{pmr}_{y, w} A \vee B \quad: \equiv\left(x \mathrm{pmr}_{y} A\right) \diamond_{i}\left(v \mathrm{pmr}_{w} B\right) \\
& f \operatorname{pmr}_{x, w} A \rightarrow B: \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
& \langle x, n\rangle \quad \operatorname{pmr}_{y} \quad \exists z A \quad: \equiv x \operatorname{pmr}_{y} A[n / z] \\
& f \mathrm{pmr}_{z, y} \forall z A \quad: \equiv f z \operatorname{pmr}_{y} A .
\end{aligned}
$$

Pointwise realizability

Can also be viewed as associating formulas to relations

$$
\begin{aligned}
& \langle x, v\rangle \operatorname{pmr}_{y, w} A \wedge B \quad: \equiv\left(x \operatorname{pmr}_{y} A\right) \wedge\left(v \operatorname{pmr}_{w} B\right) \\
& \langle x, v, i\rangle \mathrm{pmr}_{y, w} A \vee B \quad: \equiv\left(x \mathrm{pmr}_{y} A\right) \diamond_{i}\left(v \mathrm{pmr}_{w} B\right) \\
& f \operatorname{pmr}_{x, w} A \rightarrow B: \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
& \langle x, n\rangle \quad \operatorname{pmr}_{y} \quad \exists z A \quad: \equiv x \operatorname{pmr}_{y} A[n / z] \\
& f \mathrm{pmr}_{z, y} \forall z A \quad: \equiv f z \operatorname{pmr}_{y} A .
\end{aligned}
$$

An actual realiser refutes all possible challenges.

Lemma

$(x \mathrm{mr} A) \Leftrightarrow \forall y\left(x \mathrm{pmr}_{y} A\right)$

Embeddings IL into LL

$$
\begin{aligned}
(A \wedge B)^{*} & : \equiv A^{*} \& B^{*} \\
(A \vee B)^{*} & : \equiv!A^{*} \oplus!B^{*} \\
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} \\
(\forall x A)^{*} & : \equiv \forall x A^{*} \\
(\exists x A)^{*} & : \equiv \exists x!A^{*}
\end{aligned}
$$

Embeddings IL into LL

$$
\begin{array}{llll}
(A \wedge B)^{*} & : \equiv A^{*} \& B^{*} & (A \wedge B)^{\circ} & : \equiv A^{\circ} \otimes B^{\circ} \\
(A \vee B)^{*} & : \equiv!A^{*} \oplus!B^{*} & (A \vee B)^{\circ} & : \equiv A^{\circ} \oplus B^{\circ} \\
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} & (A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
(\forall x A)^{*} & : \equiv \forall x A^{*} & (\forall x A)^{\circ} & : \equiv!\forall x A^{\circ} \\
(\exists x A)^{*} & : \equiv \exists x!A^{*} & (\exists x A)^{\circ} & : \equiv \exists x A^{\circ}
\end{array}
$$

Embeddings IL into LL

$$
\begin{array}{rlll}
(A \wedge B)^{*} & : \equiv A^{*} \& B^{*} & (A \wedge B)^{\circ} & : \equiv A^{\circ} \otimes B^{\circ} \\
(A \vee B)^{*} & : \equiv!A^{*} \oplus!B^{*} & (A \vee B)^{\circ} & : \equiv A^{\circ} \oplus B^{\circ} \\
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} & (A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
(\forall x A)^{*} & : \equiv \forall x A^{*} & (\forall x A)^{\circ} & : \equiv!\forall x A^{\circ} \\
(\exists x A)^{*} & : \equiv \exists x!A^{*} & (\exists x A)^{\circ} & : \equiv \exists x A^{\circ}
\end{array}
$$

Lemma
 $A^{\circ} 0-0!A^{*}$

Realizability and LL

$$
\begin{array}{ll}
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} \\
(A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
f \operatorname{pmr}_{x, w} A \rightarrow B & : \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
f \operatorname{mr}^{\circ} \rightarrow B & : \equiv \forall x((x \operatorname{mr} A) \rightarrow(f x \operatorname{mr} B))
\end{array}
$$

Realizability and LL

$$
\begin{array}{ll}
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} \\
(A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
f \operatorname{pmr}_{x, w} A \rightarrow B & : \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
f \operatorname{mr} A \rightarrow B & : \equiv \forall x((x \operatorname{mr} A) \rightarrow(f x \operatorname{mr} B))
\end{array}
$$

Realizability and LL

$$
\begin{array}{ll}
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} \\
(A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
f \operatorname{pmr}_{x, w} A \rightarrow B & : \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
f \operatorname{mr}^{\circ} \rightarrow B & : \equiv \forall x((x \operatorname{mr} A) \rightarrow(f x \operatorname{mr} B))
\end{array}
$$

Realizability and LL

$$
\begin{array}{ll}
(A \rightarrow B)^{*} & : \equiv!A^{*} \multimap B^{*} \\
(A \rightarrow B)^{\circ} & : \equiv!\left(A^{\circ} \multimap B^{\circ}\right) \\
f \operatorname{pmr}_{x, w} A \rightarrow B & : \equiv \forall y\left(x \operatorname{pmr}_{y} A\right) \rightarrow\left(f x \operatorname{pmr}_{w} B\right) \\
f \operatorname{mr} A \rightarrow B & : \equiv \forall x((x \operatorname{mr} A) \rightarrow(f x \operatorname{mr} B))
\end{array}
$$

Lemma

$A^{\circ} \mathrm{o}-\mathrm{o}!A^{*}$

Lemma

$(x \mathrm{mr} A) \Leftrightarrow \forall y\left(x \mathrm{pmr}_{y} A\right)$

Realizability and LL

Realizability and LL

Outline

(1) Realizability (a reformulation)

(2) Linear Logic (a model)
(3) Functional Interpretations of LL
4. Functional Interpretations of ILL

A model of LL

Interpret formulas A of linear logic as bipartite graphs

- $\left(A^{+}, A^{-},|A|_{y}^{x}\right)$
- two sets of nodes A^{+}, A^{-}
- edge relation $|A|_{y}^{x}$

A model of LL

Interpret formulas A of linear logic as bipartite graphs

- $\left(A^{+}, A^{-},|A|_{y}^{x}\right)$
(simultaneous game)
- two sets of nodes $A^{+}, A^{-} \quad$ (sets of moves)
- edge relation $|A|_{y}^{x} \quad$ (adjudication relation)

A model of LL

Interpret formulas A of linear logic as bipartite graphs

- $\left(A^{+}, A^{-},|A|_{y}^{x}\right)$
(simultaneous game)
- two sets of nodes $A^{+}, A^{-} \quad$ (sets of moves)
- edge relation $|A|_{y}^{x} \quad$ (adjudication relation)
$\mathcal{B}(X, Y) \equiv$ bipartite graphs between X and Y (set of possible games with move-sets X, Y)

A model of LL

Interpret formulas A of linear logic as bipartite graphs

- $\left(A^{+}, A^{-},|A|_{y}^{x}\right)$
(simultaneous game)
- two sets of nodes $A^{+}, A^{-} \quad$ (sets of moves)
- edge relation $|A|_{y}^{x} \quad$ (adjudication relation)
$\mathcal{B}(X, Y) \equiv$ bipartite graphs between X and Y (set of possible games with move-sets X, Y)
$\mathcal{B}_{f}(X, Y) \equiv$ functional bipartite graphs between X and Y (set of strategies in sequential version of game)

Some simple games

$$
\begin{aligned}
1 & : \equiv(\{*\},\{*\},\{\langle *, *\}\}) \\
\perp & : \equiv(\{*\},\{*\},\{ \}) \\
0 & : \equiv(\{ \},\{*\},\{ \}) \\
T & : \equiv(\{*\},\{ \},\{ \}) .
\end{aligned}
$$

Dual of a game

Given bipartite graph $A \equiv\left(A^{+}, A^{-},|A|\right)$ define

$$
A^{\perp}: \equiv\left(A^{-}, A^{+}, \neg|A|\right) .
$$

Dual of a game

Given bipartite graph $A \equiv\left(A^{+}, A^{-},|A|\right)$ define

$$
A^{\perp}: \equiv\left(A^{-}, A^{+}, \neg|A|\right) .
$$

Lemma

- $A \sim\left(A^{\perp}\right)^{\perp}$
- $1 \sim \perp^{\perp}$
- $0 \sim \top^{\perp}$
where \sim denotes graph isomorphism.

Sum of games

Play two games but only count outcome of one

$$
\begin{aligned}
|A \oplus B|_{\langle y, w\rangle}^{\operatorname{inj}_{j} x} & : \equiv \begin{cases}|A|_{y}^{x} & \text { if } i=0 \\
|B|_{w}^{x} & \text { if } i=1\end{cases} \\
|A \& B|_{\operatorname{lin}_{i} y}^{\langle x, v\rangle} & : \equiv \begin{cases}|A|_{y}^{x} & \text { if } i=0 \\
|B|_{y}^{v} & \text { if } i=1\end{cases}
\end{aligned}
$$

where $(A \oplus B)^{+}=A^{+} \uplus B^{+}$and $(A \oplus B)^{-}=A^{-} \times B^{-}$.

Sum of games

Play two games but only count outcome of one

$$
\begin{aligned}
|A \oplus B|_{\langle y, w\rangle}^{\operatorname{inj}_{j} x} & : \equiv \begin{cases}|A|_{y}^{x} & \text { if } i=0 \\
|B|_{w}^{x} & \text { if } i=1\end{cases} \\
|A \& B|_{\operatorname{lin}_{i} y}^{\langle x, v\rangle} & : \equiv \begin{cases}|A|_{y}^{x} & \text { if } i=0 \\
|B|_{y}^{v} & \text { if } i=1\end{cases}
\end{aligned}
$$

where $(A \oplus B)^{+}=A^{+} \uplus B^{+}$and $(A \oplus B)^{-}=A^{-} \times B^{-}$.

Lemma

- $A \oplus 0 \sim A$
- $A \& T \sim A$

Product of games

Play two games in parallel

$$
\begin{aligned}
|A \rtimes B|_{\langle y, w\rangle}^{\langle S, T\rangle} & : \equiv|A|_{y}^{S w} \text { or }|B|_{w}^{T y} \\
|A \otimes B|_{\langle S, T\rangle}^{x, v\rangle} & : \equiv|A|_{S v}^{x} \text { and }|B|_{T x}^{v}
\end{aligned}
$$

where

- $(A \ngtr B)^{+}=\mathcal{B}_{f}\left(B^{-}, A^{+}\right) \times \mathcal{B}_{f}\left(A^{-}, B^{+}\right)$
- $(A>B)^{-}=A^{-} \times B^{-}$.

Product of games

Play two games in parallel

$$
\begin{aligned}
|A \oslash B|_{\langle y, w\rangle}^{\langle S, T\rangle} & : \equiv|A|_{y}^{S w} \text { or }|B|_{w}^{T y} \\
|A \otimes B|_{\langle S, T\rangle}^{x, v\rangle} & \equiv|A|_{S v}^{x} \text { and }|B|_{T x}^{v}
\end{aligned}
$$

where

- $(A \ngtr B)^{+}=\mathcal{B}_{f}\left(B^{-}, A^{+}\right) \times \mathcal{B}_{f}\left(A^{-}, B^{+}\right)$
- $(A>B)^{-}=A^{-} \times B^{-}$.

Lemma

- $A \oslash \perp \sim A$
- $A \otimes 1 \sim A$

Relative games

Let $A \multimap B: \equiv A^{\perp} \gamma B$
In particular we have that

$$
|A \multimap B|_{\langle x, w\rangle}^{\langle S, T\rangle} \equiv \text { if }|A|_{S w}^{x} \text { then }|B|_{w}^{T x}
$$

where

- $(A \multimap B)^{+}=\mathcal{B}_{f}\left(A^{+}, B^{+}\right) \times \mathcal{B}_{f}\left(B^{-}, A^{-}\right)$
- $(A \multimap B)^{-}=A^{+} \times B^{-}$.

Duplication of games

Play several copies of a game in parallel

$$
\begin{aligned}
|? A|_{y}^{*} & : \equiv \exists x^{A^{+}}|A|_{y}^{x} \\
|!A|_{*}^{x} & : \equiv \forall y^{A^{-}}|A|_{y}^{x}
\end{aligned}
$$

where $(? A)^{+}=\{*\}$ and $(? A)^{-}=A^{-}$.

Duplication of games

Play several copies of a game in parallel

$$
\begin{aligned}
|? A|_{y}^{*} & : \equiv \exists x^{A^{+}}|A|_{y}^{x} \\
|!A|_{*}^{x} & : \equiv \forall y^{A^{-}}|A|_{y}^{x}
\end{aligned}
$$

where $(? A)^{+}=\{*\}$ and $(? A)^{-}=A^{-}$.

Lemma

- ? $0 \sim \perp$
-! $\top \sim 1$

Soundness

Theorem

If A is provable in linear logic then the bipartite graph A has a covering point, i.e. there exists an $x^{A^{+}}$such that $\forall y^{A^{-}}|A|_{y}^{x}$.

Soundness

Theorem

If A is provable in linear logic then the bipartite graph A has a covering point, i.e. there exists an $x^{A^{+}}$such that $\forall y^{A^{-}}|A|_{y}^{x}$.
A is provable \Rightarrow first player has a winning move in game A

Intuitionistic truth via linear logic
Via $(\cdot)^{\circ}: ~ I L \mapsto$ LL we can model an intuitionistic formula A as the bipartite graph A°

More precisely, let $x \Vdash A \equiv \forall y^{\left(A^{\circ}\right)^{-}}\left|A^{\circ}\right|_{y}^{x}$
A intuitionistically true if $\exists x(x \Vdash A)$

Intuitionistic truth via linear logic

Via $(\cdot)^{\circ}: ~ I L \mapsto$ LL we can model an intuitionistic formula A as the bipartite graph A°

More precisely, let $x \Vdash A \equiv \forall y^{\left(A^{0}\right)^{-}}\left|A^{\circ}\right|_{y}^{x}$
A intuitionistically true if $\exists x(x \Vdash A)$

Theorem

$$
\begin{array}{cccc}
\langle x, y\rangle & \Vdash A \wedge B & \Leftrightarrow(x \Vdash A) \wedge(y \Vdash B) \\
\operatorname{inj}_{i} x & \Vdash A \vee B & \Leftrightarrow & (x \Vdash A) \diamond_{i}(x \Vdash B) \\
S & \Vdash A \rightarrow B & \Leftrightarrow & \forall x((x \Vdash A) \rightarrow(S x \Vdash B)) .
\end{array}
$$

Outline

(1) Realizability (a reformulation)

(2) Linear Logic (a model)
(3) Functional Interpretations of LL
(4) Functional Interpretations of ILL

Functional interpretation of LL

Four changes from previous interpretation:

1. Work with infinite bipartite graphs
X, Y sets of functionals of finite type (strategies $=$ functionals)
2. Define an interpretation of LL inside LL Adjudication relation as a formula of LL
3. Interpret quantifiers
4. Look at different interpretations of exponentials

Finite types

Assume a couple of basic types like \mathbb{B} and \mathbb{N}
Close under

- Function type $\rho \rightarrow \tau$
- Product type $\rho \times \tau$
- List type ρ^{*}

Functional interpretation of LL

Additives

Play both games $|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$ and $|B|_{w}^{v}$
One of the players chooses which game will count

$$
\begin{aligned}
|A \oplus B|_{\boldsymbol{y}, \boldsymbol{w}, \boldsymbol{w}}^{\boldsymbol{x}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|A \& B|_{\boldsymbol{y}, \boldsymbol{w}, z} & \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{v}
\end{aligned}
$$

where $A \diamond_{z} B \equiv(!(z=\mathrm{tt}) \multimap A) \&(!(z=\mathrm{ff}) \multimap B)$.

Functional interpretation of LL

Quantifiers (Generalised additives)

Play all games $\left|A_{z}\right|_{y}^{\mid x}$
One player chooses which game will count
Other player is allowed to know which game was chosen

$$
\begin{aligned}
\left|\exists z A_{z}\right|_{f}^{x, z} & : \equiv\left|A_{z}\right|_{f z}^{x} \\
\left|\forall z A_{z}\right|_{y, z}^{f} & : \equiv\left|A_{z}\right|_{y}^{f z}
\end{aligned}
$$

Functional interpretation of LL

Multiplicatives

Play games $|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$ and $|B|_{\boldsymbol{w}}^{\boldsymbol{v}}$ in parallel
One of the players can play copycat

$$
\begin{aligned}
|A \diamond B|_{\boldsymbol{y}, \boldsymbol{w}}^{f, g} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{f w}} \otimes|B|_{\boldsymbol{w}}^{\boldsymbol{g y}} \\
|A \otimes B|_{f, \boldsymbol{g}}^{\boldsymbol{x}} & : \equiv|A|_{\boldsymbol{f v}}^{\boldsymbol{x}} \otimes|B|_{\boldsymbol{g x}}^{v}
\end{aligned}
$$

Functional interpretation of LL

Exponentials (Generalised multiplicatives)

Play several copies of game $|A|_{y}^{x}$
One player must choose a uniform move

$$
\begin{aligned}
|? A|_{y} & : \equiv ? \exists \boldsymbol{x}|A|_{y}^{x} \\
|!A|^{x} & \equiv \equiv!\forall \boldsymbol{y}|A|_{y}^{x}
\end{aligned}
$$

Other player plays second (break of symmetry)
Other player plays a set of moves

Functional interpretation of LL

Exponentials (Generalised multiplicatives)

Play several copies of game $|A|_{y}^{x}$
One player must choose a uniform move

$$
\begin{aligned}
|? A|_{y}^{f} & : \equiv ? \exists \boldsymbol{x} \sqsubset \boldsymbol{f y}|A|_{y}^{x} \\
|!A|_{\boldsymbol{g}}^{x} & : \equiv!\forall \boldsymbol{y} \sqsubset \boldsymbol{g} \boldsymbol{x}|A|_{y}^{x}
\end{aligned}
$$

Other player plays second (break of symmetry)
Other player plays a set of moves

Exponentials: Conditions

The kind of move-sets need to satisfy:
There exists terms $\boldsymbol{\eta}, \boldsymbol{\epsilon}$ and $\boldsymbol{\mu}$ such that
(I) Every element \boldsymbol{x} belongs to a set $\boldsymbol{\eta} \boldsymbol{x}$
(II) The sets \boldsymbol{y}_{i} are contained in the set $\boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1}$
(III) For each $\boldsymbol{x} \sqsubset \boldsymbol{b}$ the set $\boldsymbol{h} \boldsymbol{x}$ is contained in $\boldsymbol{\mu} \boldsymbol{h} \boldsymbol{b}$

Exponentials: Conditions

The kind of move-sets need to satisfy:
There exists terms $\boldsymbol{\eta}, \boldsymbol{\epsilon}$ and $\boldsymbol{\mu}$ such that
(I) Every element \boldsymbol{x} belongs to a set $\boldsymbol{\eta} \boldsymbol{x}$

$$
\forall \boldsymbol{y} \sqsubset \boldsymbol{\eta} \boldsymbol{x} A \vdash A[\boldsymbol{x} / \boldsymbol{y}]
$$

(II) The sets \boldsymbol{y}_{i} are contained in the set $\boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1}$
(III) For each $\boldsymbol{x} \sqsubset \boldsymbol{b}$ the set $\boldsymbol{h} \boldsymbol{x}$ is contained in $\boldsymbol{\mu} \boldsymbol{h} \boldsymbol{b}$

Exponentials: Conditions

The kind of move-sets need to satisfy:
There exists terms $\boldsymbol{\eta}, \boldsymbol{\epsilon}$ and $\boldsymbol{\mu}$ such that
(I) Every element \boldsymbol{x} belongs to a set $\boldsymbol{\eta} \boldsymbol{x}$ $\forall \boldsymbol{y} \sqsubset \boldsymbol{\eta} \boldsymbol{x} A \vdash A[\boldsymbol{x} / \boldsymbol{y}]$
(II) The sets \boldsymbol{y}_{i} are contained in the set $\boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1}$

$$
\forall \boldsymbol{y} \sqsubset \boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1} A \vdash \forall \boldsymbol{y} \sqsubset \boldsymbol{y}_{i} A \quad(i \in\{0,1\})
$$

(III) For each $\boldsymbol{x} \sqsubset \boldsymbol{b}$ the set $\boldsymbol{h} \boldsymbol{x}$ is contained in $\boldsymbol{\mu} \boldsymbol{h} \boldsymbol{b}$

Exponentials: Conditions

The kind of move-sets need to satisfy:
There exists terms $\boldsymbol{\eta}, \boldsymbol{\epsilon}$ and $\boldsymbol{\mu}$ such that
(I) Every element \boldsymbol{x} belongs to a set $\boldsymbol{\eta} \boldsymbol{x}$

$$
\forall \boldsymbol{y} \sqsubset \boldsymbol{\eta} \boldsymbol{x} A \vdash A[\boldsymbol{x} / \boldsymbol{y}]
$$

(II) The sets \boldsymbol{y}_{i} are contained in the set $\boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1}$

$$
\forall \boldsymbol{y} \sqsubset \boldsymbol{\epsilon} \boldsymbol{y}_{0} \boldsymbol{y}_{1} A \vdash \forall \boldsymbol{y} \sqsubset \boldsymbol{y}_{i} A \quad(i \in\{0,1\})
$$

(III) For each $\boldsymbol{x} \sqsubset \boldsymbol{b}$ the set $\boldsymbol{h} \boldsymbol{x}$ is contained in $\boldsymbol{\mu} \boldsymbol{h} \boldsymbol{b}$ $\forall \boldsymbol{y} \sqsubset \boldsymbol{\mu} \boldsymbol{h} \boldsymbol{b} A \vdash \forall \boldsymbol{x} \sqsubset \boldsymbol{b} \forall \boldsymbol{y} \sqsubset \boldsymbol{h} \boldsymbol{x} A$.

Soundness

Theorem

Assuming (I, II, III). If $\mathrm{LL} \vdash A$
there exists a closed simply typed λ-term t such that $\mathrm{LL}^{\omega} \vdash \forall y|A|_{y}^{t}$.

Instances satisfying (I, II, III)

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Instances satisfying (I, II, III)

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$
- Finite sets
$|!A|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{f} \boldsymbol{x}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Instances satisfying (I, II, III)

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$
- Finite sets
$|!A|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{f} \boldsymbol{x}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$
- Singleton sets
$|!A|_{f}^{x}: \equiv!|A|_{f x}^{x}$.

Instances satisfying (I, II, III)

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$
- Finite sets
$|!A|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{f} \boldsymbol{x}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$
- Singleton sets (assuming decidability)
$|!A|_{f}^{x}: \equiv!|A|_{f x}^{x}$.

Functional interpretation of LL

- Symmetric game \Rightarrow branching quantifier

$$
A \quad \mapsto \quad \exists_{y}^{x}|A|_{y}^{y}
$$

- Characterisation principles more complicated
- Games ! A and ? A correspond to a "double advantage"

Functional interpretation of LL

- Symmetric game \Rightarrow branching quantifier

$$
A \quad \mapsto \quad \exists_{y}^{x}|A|_{y}^{y}
$$

- Characterisation principles more complicated
- Games ! A and ? A correspond to a "double advantage"
- Could we use sequential games?
- Can this "double advantage" be separated?

Functional interpretation of LL

- Symmetric game \Rightarrow branching quantifier

$$
A \quad \mapsto \quad \exists_{y}^{x}|A|_{y}^{y}
$$

- Characterisation principles more complicated
- Games ! A and ? A correspond to a "double advantage"
- Could we use sequential games?
- Can this "double advantage" be separated?

Yes, in intuitionistic linear logic

Outline

(1) Realizability (a reformulation)

(2) Linear Logic (a model)
(3) Functional Interpretations of LL
(4) Functional Interpretations of ILL

Simultaenous versus sequential games

Let us now work with sequential games
i.e. Eloise plays first, followed by Abelard's move

$$
A \quad \mapsto \quad \exists \boldsymbol{x} \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Simultaenous versus sequential games

Let us now work with sequential games
i.e. Eloise plays first, followed by Abelard's move

$$
A \quad \mapsto \quad \exists \boldsymbol{x} \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

No restriction, since Eloise's move could be a function

$$
\exists \boldsymbol{f} \forall \boldsymbol{y}|A|_{y}^{f y} \equiv \forall \boldsymbol{y} \exists \boldsymbol{x}|A|_{y}^{x}
$$

Functional interpretation of ILL

$$
\begin{aligned}
|A \oplus B|_{\boldsymbol{y}, \boldsymbol{w}, \boldsymbol{w}, z}^{x} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|A \& B|_{\boldsymbol{y}, \boldsymbol{w}, z} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{v}
\end{aligned}
$$

Functional interpretation of ILL

$$
\begin{aligned}
& |A \oplus B|_{y, w}^{x, v z z}: \equiv|A|_{y}^{x} \diamond_{z}|B|_{w}^{v} \\
& |A \& B|_{y, w, z}^{x, w}: \equiv|A|_{y}^{x} \diamond_{z}|B|_{w}^{v} \\
& |\exists z A|_{y}^{x, z} \quad: \equiv|A|_{y}^{x} \\
& |\forall z A|_{y, z}^{f} \quad: \equiv|A|_{y}^{f z}
\end{aligned}
$$

Functional interpretation of ILL

$$
\begin{aligned}
|A \oplus B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{w}, z} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{\boldsymbol{z}}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
\left.|A \& B|\right|_{\boldsymbol{y}, \boldsymbol{w}, z} ^{\boldsymbol{x}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}_{z}} \diamond_{z}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|\exists z A|_{\boldsymbol{y}}^{\boldsymbol{x}, z} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \\
|\forall z A|_{\boldsymbol{y}, z}^{\boldsymbol{f}} & : \equiv| |_{\boldsymbol{y}}^{\boldsymbol{f z}} \\
|A \multimap B|_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} & : \equiv|A|_{\boldsymbol{f x x w}}^{\boldsymbol{x}} \multimap|B|_{\boldsymbol{w}}^{\boldsymbol{g} \boldsymbol{x}} \\
|A \otimes B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{w}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \otimes|B|_{\boldsymbol{w}}^{\boldsymbol{v}}
\end{aligned}
$$

Functional interpretation of ILL

$$
\begin{aligned}
|A \oplus B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{w}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|A \& B|_{\boldsymbol{y}, \boldsymbol{w}, z}^{\boldsymbol{x}} & : \equiv| |_{\boldsymbol{y}}^{\boldsymbol{x}} \diamond_{z}|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|\exists z A|_{\boldsymbol{y}}^{\boldsymbol{x}, \boldsymbol{z}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \\
|\forall z A|_{\boldsymbol{y}, z}^{\boldsymbol{f}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{f} z} \\
|A \multimap B|_{\boldsymbol{x}, \boldsymbol{w}}^{\boldsymbol{f}, \boldsymbol{g}} & : \equiv|A|_{\boldsymbol{f} x \boldsymbol{w}}^{\boldsymbol{x}} \multimap|B|_{\boldsymbol{w}}^{\boldsymbol{g x}} \\
|A \otimes B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}} & : \equiv|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \otimes|B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\
|!A|_{\boldsymbol{a}}^{\boldsymbol{x}} & :\left.\equiv|\boldsymbol{y} \sqsubset \boldsymbol{a}| A\right|_{\boldsymbol{y}} ^{\boldsymbol{x}} .
\end{aligned}
$$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Kreisel mod. realizability
$\left|A^{\circ}\right|^{\boldsymbol{x}}{ }^{\circ} \mathrm{o}(\boldsymbol{x} \mathrm{mr} A)^{\circ}$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set
$|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Kreisel mod. realizability
$\left|A^{0}\right|^{\boldsymbol{x}}{ }^{\circ}{ }^{\circ}(\boldsymbol{x} \mathrm{mr} A)^{\circ}$

- Finite sets
$|!A|_{\boldsymbol{a}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{a}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set

$$
|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

- Finite sets
$|!A|_{\boldsymbol{a}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{a}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Kreisel mod. realizability
$\left|A^{\circ}\right|^{\boldsymbol{x}} \circ$ ○ $(\boldsymbol{x} \mathrm{mr} A)^{\circ}$
Diller-Nahm inter.
$\left|A^{*}\right|_{\boldsymbol{y}}^{\boldsymbol{x}} \bigcirc \multimap\left(A_{d n}(\boldsymbol{x} ; \boldsymbol{y})\right)^{*}$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set

$$
|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

- Finite sets

$$
|!A|_{\boldsymbol{a}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{a}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Kreisel mod. realizability
$\left|A^{\circ}\right|^{\boldsymbol{x}} \circ$ ○ $(\boldsymbol{x} \mathrm{mr} A)^{\circ}$
Diller-Nahm inter.
$\left|A^{*}\right|_{\boldsymbol{y}}^{\boldsymbol{x}} \bigcirc \multimap\left(A_{d n}(\boldsymbol{x} ; \boldsymbol{y})\right)^{*}$

- Singleton sets $|!A|_{\boldsymbol{y}}^{\boldsymbol{x}}: \equiv!|A|_{\boldsymbol{y}}^{\boldsymbol{x}}$

Instances satisfying (I, II, III)

Same three conditions need to be satisfied, and we have:

- Whole set

$$
|!A|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

- Finite sets

$$
|!A|_{\boldsymbol{a}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{a}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

- Singleton sets

$$
|!A|_{\boldsymbol{y}}^{\boldsymbol{x}}: \equiv!|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Kreisel mod. realizability
$\left|A^{0}\right|^{\boldsymbol{x}}{ }^{\circ}{ }^{\circ}(\boldsymbol{x} \mathrm{mr} A)^{\circ}$
Diller-Nahm inter.
$\left|A^{*}\right|_{\boldsymbol{y}}^{\boldsymbol{x}} \bigcirc \bigcirc\left(A_{d n}(\boldsymbol{x} ; \boldsymbol{y})\right)^{*}$
Gödel Dialectica inter.
$\left|A^{*}\right|_{\boldsymbol{y}}^{\boldsymbol{x}} \circ \multimap\left(A_{D}(\boldsymbol{x} ; \boldsymbol{y})\right)^{*}$

Realizability and LL

Realizability and LL

Realizability and LL

Question

Modified realizability interprets full extensionality

$$
\forall x(f x=g x) \rightarrow F f=F g
$$

Dialectica interprets Markov principle

$$
\neg \forall x A_{\mathrm{qf}} \rightarrow \exists x \neg A_{\mathrm{qf}}
$$

Can we combine both?

Question

Modified realizability interprets full extensionality

$$
\forall x(f x=g x) \rightarrow F f=F g
$$

Dialectica interprets Markov principle

$$
\neg \forall x A_{\mathrm{qf}} \rightarrow \exists x \neg A_{\mathrm{qf}}
$$

Can we combine both?
Yes (thanks to the fact that! is not cannonical)

Multi-modal ILL

Add three different modalities $!_{k} A,!_{d} A$ and $!_{g} A$ with rules

$$
\begin{array}{cc}
\frac{!_{X} \Gamma \vdash A}{!_{X} \Gamma \vdash!_{Y} A}\left(!_{r}\right) & \frac{\Gamma, A \vdash B}{\Gamma,!_{Y} A \vdash B}\left(!_{l}\right) \\
\frac{\Gamma,!_{Z_{0}} A,!_{Z_{1}} A \vdash B}{\Gamma,!_{Y} A \vdash B}(\text { con }, \star) & \frac{\Gamma \vdash B}{\Gamma,!_{Y} A \vdash B}(\mathrm{wkn})
\end{array}
$$

where $X, Y, Z_{i} \in\{k>d>g\}$ and $X \geq Y \geq Z_{i}$

Multi-modal ILL

Add three different modalities $!_{k} A,!_{d} A$ and $!_{g} A$ with rules

$$
\begin{array}{cc}
\frac{!_{X} \Gamma \vdash A}{!_{X} \Gamma \vdash!_{Y} A}\left(!_{r}\right) & \frac{\Gamma, A \vdash B}{\Gamma,!_{Y} A \vdash B}\left(!_{l}\right) \\
\frac{\Gamma,!_{Z_{0}} A,!_{Z_{1}} A \vdash B}{\Gamma,!_{Y} A \vdash B}(\text { con }, \star) & \frac{\Gamma \vdash B}{\Gamma,!_{Y} A \vdash B}(\mathrm{wkn})
\end{array}
$$

where $X, Y, Z_{i} \in\{k>d>g\}$ and $X \geq Y \geq Z_{i}$
(\star) Syntactic condition ensuring decidability when $Y=g$

Hybrid functional interpretation

Kreisel bang

$$
\left|!_{k} A\right|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Diller-Nahm bang

$$
\left|!_{d} A\right|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{f} \boldsymbol{x}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Gödel bang

$$
\left|!{ }_{g} A\right|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!|A|_{\boldsymbol{f} \boldsymbol{x}}^{\boldsymbol{x}}
$$

Hybrid functional interpretation

Kreisel bang

$$
\left|!_{k} A\right|^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Diller-Nahm bang

$$
\left|!_{d} A\right|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!\forall \boldsymbol{y} \in \boldsymbol{f} \boldsymbol{x}|A|_{\boldsymbol{y}}^{\boldsymbol{x}}
$$

Gödel bang

$$
\left|!_{g} A\right|_{\boldsymbol{f}}^{\boldsymbol{x}}: \equiv!|A|_{\boldsymbol{f} \boldsymbol{x}}^{\boldsymbol{x}}
$$

Let a colouring algorithm decide the optimal/desired labelling

Hybrid functional interpretation

References

Modified realizability interpretation of classical linear logic LICS 2007

Hybrid functional interpretations with M.-D. Hernest, CiE 2008 (LNCS 5028:251-260, 2008)

Functional interpretations of linear and intuitionistic logic To appear in I\&C

Hybrid functional interpretations of linear and IL To appear in JoL\&C

Functional interpretations of intuitionistic linear logic with G . Ferreira, in preparation

