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1 Proof Mining

Let us look at Table 1.1. “Proof mining” means exactly what you would expect:
looking at a given proof and trying to find something valuable hidden in that
proof.

Point 1. The main point of a mathematical proof is to assert the truth of
a mathematical statement. Proofs, however, carry a lot of extra information.
Proofs will normally also give you an idea of why the theorem is true. Example:
Banach-Tarski’s paradox. They might also provide computational information,
i.e. an algorithm to construct a witness, or an upper bound on the size of the
witness. Example: infinitely many primes.

Point 2. Proof mining tries to formalise these ideas, and come up with tech-
niques that enable one to systematically analyse proofs to extract information.
Step 1: Identify what information can be obtained. Step 2: Carry out the
extraction. Make analogy with actual mining. In mathematical logic this idea
goes back to the 1950s, but only recently really interesting results started to
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C Proof NC Proof

C Theorem (Πk≤2) (I) (II)

NC Theorem (Πk>2) (III) (IV)

Table 1: Types of Proofs

come out of this.

Point 3. Proof mining can be viewed as a formalisation of Tao’s transfer prin-
ciples. A systematic link between soft and hard mathematics.

Point 4. We will try to make a distinction between mathematical complexity
and computational complexity of a proof. From a computational point of view
Fermat’s last theorem is trivial. On the other hand, the law of excluded middle
(which is mathematically trivial) is highly non-computable.

Point 5. The end-result of proof mining is again a purely mathematical proof,
so no traces of logic are required for the verification. Logic is only used as a
tool in the extraction of new information.

1.1 Logical Preliminaries

Throughout my talk you should keep in mind that we will have an effective
reading of “there exists” and “or”. So, a statement ∃xA in some sense asks
for information about x’s having property A. This could be a program which
computes x, or it could simply be a bound on a value of x that satisfies A.
Similarly, a proof of ∀n(A(n) ∨ B(n)) asks for a decision whether A(n) is true
or B(n) is true, given n. This information is called the witnessing information
of a statement.

1.2 Non-computational theorems

A statement A is called computational if a putative proof of A will give us a
recursive procedure witnessing A. Otherwise is said to be non-computational.
For instance, the following statements are computational:

• An equation has no solutions ∀n > 2∀x, y, z(xn + yn 6= zn)

• A function on the reals is zero (∗)

• A recursive set is infinite ∀n∃m(m ≥ n ∧R(m))

• Recursive specification of a program is total, i.e. ∀x∃yS(x, y)

• A function on the reals is positive ∀x(fx >R 0)

• Implication between (∗).

On the other hand, the following statements are not computational

• Minimum value ∀f∃x∀y(fx ≤ fy)
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• Sequence is Cauchy ∀ε∃n∀m ≥ n(|an − am| < ε)

• Bounded increasing sequence of reals converges

• König’s lemma

• Excluded middle ∀n(∃kA(n, k) ∨ ∀k¬A(n, k))

• Comprehension ∃f∀n(fn = 0↔ A(n)).

1.3 Non-computational proofs

Point 1. A non-computational proof is a proof which uses a non-computational
lemma or principle. There are two things which make a proof intricate or
complex: the mathematics or the logic. I will focus on the logical aspect of
proofs.

Point 2. Some non-computational theorems have computational proofs, and
some computational theorems need non-computational proofs.

2 Examples

2.1 Infinitely many primes (I)

Proposition 2.1. ∀k∃n(n > k ∧ Prime(n)).

Proof [constructive]. Given k, let P = !k + 1. Let p be any prime dividing
P . Clearly p > k. �

2.2 ∃a, b(a, b irrational ∧ ab rational) (III)

Proposition 2.2. ∃a, b(a, b irrational ∧ ab rational).

Proof [classical]. If
√

2
√

2
is rational take a = b =

√
2. Else, take a =

√
2
√

2

and b =
√

2. �

Proof [constructive]. Let a =
√

2 and b = 2 log2(3). �

2.3
√

2 is irrational (negative translation) (II)

Point 1. Eliminate classical logic. That normally comes in the form of a proof
by contradiction. If you want to prove A you assume ¬A and derive B, at the
same time that you also know ¬B, contradiction. Well, if you know ¬B, then
you can derive ¬¬A directly, so all you need is

¬¬A→ A

which you can derive from
A ∨ ¬A.

Proof [by contradiciton]. Assume exists p, q rational and relative primes
such that

√
2 = p/q. Then we have 2q2 = p2, and hence p is even (p = 2t).
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Therefore, we also have q2 = 2t2, and hence q is even, contradiction. �

Proof [direct]. Fix p, q rational and relative primes. In particular either (p is
odd) or (p is even and q is odd). If p is odd then 2q2 6= p2, hence

√
2 6= p/q.

Also, if p is even (p = 2t) and q is odd then 2q2 6= p2. �

Proposition 2.3. ∀p, q(RP(p, q)→ |2− p/q| > 1/q2).

Enriched proof. Fix p, q rational and relative primes. In particular either
(p is odd) or (p is even and q is odd). If p is odd then |2q2 − p2| ≥ 1, hence
|2− p2/q2| ≥ 1/q2. Similarly if p is even and q is odd. �

2.4 Σ 1
pi

diverges (negative translation) (II)

Proof [by contradiciton]. Assume it converges. Then

Σi≥k+1
1
pi
<

1
2

for some k. Hence
Σi≥k+1

N

pi
<
N

2

for all N . Call p1, . . . , pk the small primes. Given N , define Nb the numbers
≤ N divisible by some big prime, and Ns the numbers only divisible by small
primes. Clearly N = Ns +Nb. Also,

Nb ≤ Σi≥k+1b
N

pi
c < N

2

and
Ns ≤ 2k

√
N ≤ N

2
,

when N = 22k+2, a contradiction. �

Proof [direct]. We want to show that Σ 1
pi

diverges, i.e.

∀k(Σi≥k+1
1
pi
≥ 1

2
).

Fix k and let N = 22k+2. As before, we have that Ns ≥ 2k
√
N = N/2. So,

22k+1 ≤ Nb ≤ Σi≥k+1b
N

pi
c ≤ Σi≥k+1

N

pi
.

Hence, 1/2 ≤ Σi≥k+11/pi. �

Proof [quantitative]. Replace last line by

22k+1 ≤ Nb ≤ Σb(k)≥i≥k+1b
N

pi
c ≤ Σb(k)≥i≥k+1

N

pi
.

E.g. b(k) = greatest j such that pk ≤ 22k+2. Then Σb2Lk≥i≥k+1
1
pi
≥ L. �
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2.5 Drinker’s paradox (nci of LEM) (IV)

Point 1. Interpreting classical logic. In some cases classical logic (or proofs by
contradiction) cannot be eliminated. In these cases, the best we can do is give
them a computational interpretation. As we exemplify in the following.

Proposition 2.4. (e− π is irrational) or (e+ π is irrational).

Proposition 2.5. ∃x(P (x)→ ∀yP (y)).

Proposition 2.6. ∀f∃x(P (x)→ P (fx)).

Proof. Take x = 0 if P (f0) holds, else take x = f0. �

2.6 Mean ergodic theorem (nci of comprehension) (IV)

Point 1. Non-counterexample interpretation can also be applied in more com-
plex situations.

Proposition 2.7. T non-expansive linear operator on Hilbert space H. Then

Anf =
Σn−1

k=0T
kf

n

converges (in the Hilbert space norm).

Proposition 2.8 (nci). ∀KN→N, ε>0∃n(||Anf −An+K(n)f || < ε).

Given any M , pick K above to the the function K(n) which returns m ∈
[n, n+M(n)] maximizing ||Anf −Amf ||. Then we have:

Proposition 2.9. ∀MN→N, ε>0 ∃n∀m ∈ [n, n+M(n)](||Anf −Amf || < ε).

2.7 L1-approximation (bounded interpretation of WKL) (II)

Let us look at a mild use of comprehension, namely, König’s lemma (actually
only the weak version)

∀n∃s(|s| = n ∧ T (s))→ ∃α∀nT (αn)

where T is a finitely branching tree.

Point 1. This is widely used. Equivalent to Heine/Borel compactness, contin-
uous functions attain its infimum on unit interval, completeness of first order
logic, etc.

Point 2. This is not computational. There exists a recursive infinite tree whose
infinite branches are all non-computable.

Point 3. Nevertheless, when used in a proof of a computational theorem, uses
of König’s lemma can be eliminated.

Lemma 2.1 (Lemma 1). Let f, h ∈ C[0, 1]. If f has at most a finite number
of roots and if

∫
h sgn f 6= 0 then ∃λ(

∫
|f − λh| <

∫
|f |).
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Proof. Let x1, . . . , xn be all the roots of f . Let Aε the the union of closed inter-
vals between the roots, away by ε. And B the complement of A. If

∫
h sgn f > 0

(otherwise invert signs), select ε small enough so that (∗)
∫
A h sgnf >

∫
B |h|.

Since A is closed and contains no roots of f we have δ = inf f is positive. Let
λ be such that 0 < λ||h|| < δ. Then, on A we have (∗∗) sgn(f − λh) = sgnf .
Thus we have∫

|f − λh| (∗∗)=
∫

B
|f − λh|+

∫
A

(f − λh) sgnf
(∗)
<

∫
|f |.

That concludes the proof. �

Lemma 2.2 (Computational Lemma 1). Let f, h ∈ C[0, 1], x1, . . . , xn ∈ [0, 1]
and ε, η ∈ Q. If (∗∗) ∀λ(||f − λh|| ≥ ||f ||) and (∗)

∫
A h sgnf >

∫
B |h| then f

has an η-root in A.

Proof. Let A and B as above. Thus, for all λ, we have∫
|f − λh|

(∗∗)
≥

∫
|f |

(∗)
>

∫
B
|f − λh|+

∫
A

(f − λh) sgnf.

Let λ = η/||h||. Hence,
∫
A |f − λh| >

∫
A(f − λh) sgnf , i.e. there is a point

where sgn(f − λh) 6= sgnf . Which implies that |fy| ≤ λ|h(y)|, for some y ∈ A.
�

3 Appendix A: PHP ⊆ Classical Logic + Induction

Proof by induction

A(0) ∧ ∀n(A(n)→ A(n+ 1))→ ∀nA(n)

have a very clear computational interpretation via iteration (recursion). But
when classical logic and induction come together they can be quite difficult to
analyse. And often these proofs are related to the pigeon-hole principle.

Proposition 3.1 (Dirichlet). ∀nN, xR∃m, kN((1 ≤ m ≤ n) ∧ |mx− k| ≤ 1
n+1).

Proof [non-computational]. Let n and x be fixed. Assume, for the sake of
contradiction, that the fractional part of mx is always away from an integer
by more than 1/(n + 1), for all 1 ≤ m ≤ n. They, by the PHP, for some
1 ≤ m1 < m2 ≤ n we must have that the fractional part of m1x and m2x are
within 1/(n+ 1) of each other, which means that (m2−m1)x must be closer to
an integer by 1/(n+ 1), contradiction. �

Proposition 3.2. ∀nN, xR, εQ∗
+∃m, kN((1 ≤ m ≤ n) ∧ |mx− k| < 1

n+1 + ε).

Proof [computational]. Let x, n, ε be fixed. Compute mx (= xm) up to an
error ε/4, for all 1 ≤ m ≤ n. Either we can immediately find xm such that
|xm − k| ≤ 1

n+1 + ε
2 , which implies |x− k| < 1

n+1 + ε, or all xm are away from
an integer by 1

n+1 + ε
2 . Consider the n− 1 intervals
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Ii = [ i
n+1 −

ε
8 ,

i+1
n+1 + ε

8 ],

for 1 ≤ i < n. By the PHP there are {xm1} and {xm2} which fall in the same
interval, i.e. |{xm1} − {xm2}| ≤ 1

n+1 + ε
4 , which implies |{m1x} − {m2x}| ≤

1
n+1 + 3ε

4 . �

Remark 3.1. One can always turn a proof which uses the PHP

∀n∀S, T (|S| ≥ n ∧ |T | < n→ ∀HS→T∃k0, k1(Hk1 = Hk2))

into a proof by induction (and classical logic). In fact, the induction proof might
be more insightful computationally, as the following example illustrates.

Proposition 3.3. Given n + 1 numbers between 1 and 2n we can always find
a, b such that a divides b.

Proof [by PHP]. Write all numbers as 2kp, where p is odd. There are only
n odd parts, so, by the PHP, two numbers must be of the form 2k1p and 2k2p,
with k1 < k2. �

Proof [by induction and CL]. Result trivially hold for n = 1. Assume it
holds for n, let’s show for n + 1. Let S ⊆ {1, 2, . . . , 2n + 1, 2n + 2} such that
|S| ≥ n+ 2. If 2n+ 2 and n+ 1 are in the set, we are done. If 2n+ 2 is in the
set but n+ 1 is not, consider the new set S′ = (S\{2n+ 1, 2n+ 2}) ∪ {n+ 1}.
Since |S′| ≥ n+ 1 we use the IH to obtain a, b ∈ S′ such that a divides b. It is
clear that a 6= n+ 1. If b 6= n+ 1 then a, b is also a solution in S. If b = n+ 1
then a also divides 2n+ 2 in S. �

Proposition 3.4. ∀K∀fN→K∃bK∀n∃m(m ≥ n ∧ fm = b).

4 Appendix B: Theorems equivalent to WKL

The following results are equivalent to weak König’s lemma and thus to WKL0

over RCA0:

• Heine-Borel theorem for the closed unit real interval (every covering by a
sequence of open intervals has a finite subcovering).

• The Heine-Borel theorem for complete totally bounded separable metric
spaces (where covering is by a sequence of open balls).

• A continuous real function on the closed unit interval is bounded.

• A continuous real function on the closed unit interval can be uniformly
approximated by polynomials (with rational coefficients).

• A continuous real function on the closed unit interval is uniformly con-
tinuous.

• A continuous real function on the closed unit interval is Riemann inte-
grable.
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• The Brouwer fixed point theorem (for continuous functions on a finite
product of copies of the closed unit interval).

• The separable Hahn-Banach theorem in the form: a bounded linear form
on a subspace of a separable Banach space extends to a bounded linear
form on the whole space.

• Gödel’s completeness theorem (for a countable language).

• Every countable commutative ring has a prime ideal.

• Every countable formally real field is orderable.

• Uniqueness of algebraic closure (for a countable field).
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