# Recent developments around the Dialectica interpretation

#### Fernando Ferreira\* & Paulo Oliva\*\*

\*Universidade de Lisboa & \*\*Queen Mary, University of London

Oberwolfach, 8 April 2008

## Three Lectures

First Lecture Introduction to the Dialectica and majorizability interpretations Fernando Ferreira

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Second Lecture Injecting uniformities into classical mathematics Fernando Ferreira

Third Lecture Dialectica interpretation in the light of linear logic Paulo Oliva

## Three Lectures

First Lecture Introduction to the Dialectica and majorizability interpretations Fernando Ferreira

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Second Lecture Injecting uniformities into classical mathematics Fernando Ferreira

Third Lecture Dialectica interpretation in the light of linear logic Paulo Oliva

## Outline

#### Introduction

- Contraction
- Linear Logic
- 2 Dialectica Interpretation of LL
  - Interpretation of LL
  - Interpretation of IL
  - Characterisation

#### Uses of LL Interpretation

- Unification
- Hybrid Interpretations

イロト 不得 トイヨト イヨト ヨー ろくで

## Outline

#### Introduction

- Contraction
- Linear Logic

#### Dialectica Interpretation of LL

- Interpretation of LL
- Interpretation of IL
- Characterisation

#### 3 Uses of LL Interpretation

- Unification
- Hybrid Interpretations

## Dialectica interpretation of IL

#### Asymmetric

 $\exists x \forall y A_D(x; y) \qquad (intuitionistically) \\ \forall y \exists x A_D(x; y) \qquad (classically)$ 

## Dialectica interpretation of IL

#### Asymmetric

 $\exists x \forall y A_D(x; y) \qquad (intuitionistically) \\ \forall y \exists x A_D(x; y) \qquad (classically)$ 

#### Tricky (and asymmetric) treatment of implication

 $\exists f, g \forall x, w (A_D(x; gxw) \to B_D(fx; w))$ 

## Dialectica interpretation of IL

#### Asymmetric

 $\exists x \forall y A_D(x; y) \qquad (intuitionistically) \\ \forall y \exists x A_D(x; y) \qquad (classically)$ 

Tricky (and asymmetric) treatment of implication

 $\exists f, g \forall x, w (A_D(x; gxw) \to B_D(fx; w))$ 

Needs decidability of atomic formulas

## Dialectica interpretation of pure LL

Symmetric

$$\left(\begin{array}{c} \exists x\\ \forall y \end{array}\right) A_D(x;y)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

## Dialectica interpretation of pure LL

Symmetric

$$\left(\begin{array}{c} \exists x\\ \forall y \end{array}\right) A_D(x;y)$$

• Symmetric treatment of (linear) implication

$$\left(\begin{array}{c} \exists f,g\\ \forall x,w \end{array}\right) (A_D(x;gw) \multimap B_D(fx;w))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

## Dialectica interpretation of pure LL

Symmetric

$$\left(\begin{array}{c} \exists x\\ \forall y \end{array}\right) A_D(x;y)$$

Symmetric treatment of (linear) implication

$$\left(\begin{array}{c} \exists f,g\\ \forall x,w \end{array}\right) (A_D(x;gw) \multimap B_D(fx;w))$$

イロト 不得 トイヨト イヨト ヨー ろくで

No need for decidability of atomic formulas

## Dialectica interpretation of pure LL

Symmetric

$$\left(\begin{array}{c} \exists x\\ \forall y \end{array}\right) A_D(x;y)$$

Symmetric treatment of (linear) implication

$$\begin{pmatrix} \exists f, g \\ \forall x, w \end{pmatrix} (A_D(x; gw) \multimap B_D(fx; w))$$

No need for decidability of atomic formulas

#### Subtlety is in the interpretation of ! and ?

Contraction

## Importance of structural rules

Combinators

$$\begin{array}{rcccc} Kxy & \mapsto & x \\ Sxyz & \mapsto & xz(yz) \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Contraction

## Importance of structural rules

Combinators

$$\begin{array}{rccc} Kxy & \mapsto & x \\ Sxyz & \mapsto & xz(yz) \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Contraction

## Importance of structural rules

- Combinators
  - $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$

- Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

イロト 不得 トイヨト イヨト ヨー ろくで

• Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ 

- Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

イロト 不得 トイヨト イヨト ヨー ろくで

• Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ An *elimination of contractions* procedure

Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

イロト 不得 トイヨト イヨト ヨー ろくで

- Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ An *elimination of contractions* procedure
- Cut elimination: cut rule is admissible

Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

- Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ An *elimination of contractions* procedure
- Cut elimination: cut rule is admissible  $(\lambda x.t[x,x])r \mapsto t[r,r]$

Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

- Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ An *elimination of contractions* procedure
- Cut elimination: cut rule is admissible  $(\lambda x.t[x, x])r \mapsto t[r, r]$  $(\lambda x.t[x, x])r \mapsto (\lambda x_0\lambda x_1.t[x_0, x_1])rr$

- Contraction

## Importance of structural rules

Combinators

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$ 

- Herbrand theorem: if  $\exists x A(x)$  then  $\bigvee A(t_i)$ An *elimination of contractions* procedure
- **Cut elimination**: cut rule is admissible  $(\lambda x.t[x,x])r \mapsto t[r,r]$   $(\lambda x.t[x,x])r \mapsto (\lambda x_0\lambda x_1.t[x_0,x_1])rr$ Becomes an *elimination of contractions* procedure

Contraction

## Importance of structural rules

#### What are negative translations useful for?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Contraction

## Importance of structural rules

#### What are **negative translations** useful for?

Eliminate uses of classical logic (law of excluded middle)



Contraction

## Importance of structural rules

#### What are **negative translations** useful for?

Eliminate uses of classical logic (law of excluded middle)

How do they do it?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## Importance of structural rules

#### What are **negative translations** useful for?

Eliminate uses of classical logic (law of excluded middle)

How do they do it?

Move contractions from the conclusion to the premise

 $\vdash A \quad \Rightarrow \quad \neg A \vdash \perp$ 

Contraction

## Importance of structural rules

#### Need to take contraction and weakening seriously

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Contraction

## Importance of structural rules

#### Need to take contraction and weakening seriously

Linear Logic!

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Linear Logic

## Linear Logic (Girard 1987)

## • Explicit treatment of contraction

$$\frac{\Gamma, A, A}{\Gamma, A} \quad \Rightarrow \quad \frac{\Gamma, ?A, ?A}{\Gamma, ?A}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Recent developments around the Dialectica interpretation

— Linear Logi

## Linear Logic (Girard 1987)

#### • Explicit treatment of contraction

$$\frac{\Gamma, A, A}{\Gamma, A} \quad \Rightarrow \quad \frac{\Gamma, ?A, ?A}{\Gamma, ?A}$$

• Refinement of logical connectives

|                | conjunction | disjunction |
|----------------|-------------|-------------|
| additive       | $\wedge$    | $\vee$      |
| multiplicative | $\otimes$   | 8           |

(日) (日) (日) (日) (日) (日) (日) (日)

Recent developments around the Dialectica interpretation

I

Linear Logic

## Linear Logic (Girard 1987)

## • Explicit treatment of contraction

$$\frac{\Gamma, A, A}{\Gamma, A} \quad \Rightarrow \quad \frac{\Gamma, ?A, ?A}{\Gamma, ?A}$$

• Refinement of logical connectives

|                | conjunction | disjunction |
|----------------|-------------|-------------|
| additive       | $\wedge$    | $\vee$      |
| multiplicative | $\otimes$   | 8           |

• Refinement of intuitionistic implication

 $A \to B \equiv !A \multimap B$ 

#### . . . . . .

## Linear Logic with if-then-else

- ${\scriptstyle \bullet}$  Assume the boolean data type  ${\mathbb B}$
- Instead of having  $\wedge$  and  $\lor$  add  $\diamondsuit_b$
- Semantics:
  - $A \diamondsuit_b B \equiv \text{if } b \text{ then } A \text{ else } B$
- Define additive connectives as  $A \wedge B \equiv \forall b^{\mathbb{B}}(A \diamondsuit_b B)$  $A \vee B \equiv \exists b^{\mathbb{B}}(A \diamondsuit_b B)$

イロト 不得 トイヨト イヨト ヨー ろくで

Linear Logic

## Embedding IL into LL

### Definition (Girard 1987)

$$(A_{at})^{\star} :\equiv A_{at}$$
$$(A \diamondsuit_{z} B)^{\star} :\equiv A^{\star} \diamondsuit_{z} B^{\star}$$
$$(A \to B)^{\star} :\equiv !A^{\star} \multimap B^{\star}$$
$$(\forall zA)^{\star} :\equiv \forall zA^{\star}$$
$$(\exists zA)^{\star} :\equiv \exists zA^{\star}.$$

#### Lemma

If IL proves A then LL + (†) proves  $A^*$ , where (†)  $\exists zA \multimap \exists z!A$ 

・ロト・日本・日本・日本・日本・日本

Linear Logic

## Dialectica interpretation of LL

## de Paiva (1989)

- Dialectica interpretation of LL
- interpretation of LL into CL in finite types

イロト 不得 トイヨト イヨト ヨー ろくで

focus on building a model of LL

Linear Logic

## Dialectica interpretation of LL

## de Paiva (1989)

- Dialectica interpretation of LL
- interpretation of LL into CL in finite types
- focus on building a model of LL

## Shirahata (2006)

• relates de Paiva's interpretation to Shoenfield's classical variant of Gödel's interpretation

イロト 不得 トイヨト イヨト ヨー ろくで

Dialectica Interpretation of LL

## Outline

## Introduction

- Contraction
- Linear Logic

#### 2 Dialectica Interpretation of LL

- Interpretation of LL
- Interpretation of IL
- Characterisation

#### 3 Uses of LL Interpretation

- Unification
- Hybrid Interpretations

イロト 不得 トイヨト イヨト ヨー ろくで

Dialectica Interpretation of LL

## Dialectica interpretation

#### Definition (Gödel 1958)

| $(A \wedge B)_D(x, v; y, w)$  | := | $A_D(x;y) \wedge B_D(v;w)$         |
|-------------------------------|----|------------------------------------|
| $(A \lor B)_D(x, v, z; y, w)$ | :≡ | $A_D(x;y) \diamondsuit_z B_D(v;w)$ |
| $(A \to B)_D(f, g; x, w)$     | :≡ | $A_D(x; fwx) \to B_D(gx; w)$       |
| $(\forall zA)_D(f;y,z)$       | :≡ | $A_D(fz;y)$                        |
| $(\exists zA)_D(x,z;y)$       | :≡ | $A_D(x;y).$                        |

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

Then define  $(A)^D :\equiv \exists x \forall y A_D(x; y).$
Relational view

Interpretation assigns

- formulas A to binary relations  $A_D(x;y)$
- proofs  $\pi$  of A to winning move  $t_{\pi}$ , i.e.  $\forall y A_D(t_{\pi}; y)$

Relational view

Interpretation assigns

- formulas A to binary relations  $A_D(x;y)$
- proofs  $\pi$  of A to winning move  $t_{\pi}$ , i.e.  $\forall y A_D(t_{\pi}; y)$

I will write binary relation  $A_D(x; y)$  as  $|A|_y^x$ .

# Relational view

• Game for formula A is  $(D_1, D_2, |A|_y^x \subseteq D_1 \times D_2)$ 

- Two players Eloise and Abelard
- Two domains of moves
  - $x \in D_1$  and  $y \in D_2$
- Adjudication of winner
  Relation |A|<sup>x</sup><sub>y</sub> between players' moves

Dialectica Interpretation of LL

Interpretation of LL

#### Interpretation

$$|A \diamondsuit_z B|_{y,w}^{x,v} :\equiv |A|_y^x \diamondsuit_z |B|_w^v$$

Interpretation of LL

#### Interpretation

$$|A \diamondsuit_{z} B|_{y,w}^{x,v} :\equiv |A|_{y}^{x} \diamondsuit_{z} |B|_{w}^{v}$$
$$|A \otimes B|_{y,w}^{f,g} :\equiv |A|_{y}^{fw} \otimes |B|_{w}^{gy}$$
$$|A \otimes B|_{f,g}^{x,v} :\equiv |A|_{fv}^{x} \otimes |B|_{gx}^{v}$$

Interpretation of LL

#### Interpretation

$$|A \diamondsuit_{z} B|_{y,w}^{x,v} :\equiv |A|_{y}^{x} \diamondsuit_{z} |B|_{w}^{v}$$
$$|A \otimes B|_{y,w}^{f,g} :\equiv |A|_{y}^{fw} \otimes |B|_{w}^{gy}$$
$$|A \otimes B|_{f,g}^{x,v} :\equiv |A|_{fv}^{x} \otimes |B|_{gx}^{y}$$
$$|\exists z A(z)|_{f}^{x,z} :\equiv |A(z)|_{fz}^{x}$$
$$|\forall z A(z)|_{y,z}^{f} :\equiv |A(z)|_{y}^{fz}$$

Interpretation of LL

### Interpretation

$$\begin{aligned} |A \diamondsuit_{z} B|_{y,w}^{x,v} &:\equiv |A|_{y}^{x} \diamondsuit_{z} |B|_{w}^{v} \\ |A \otimes B|_{y,w}^{f,g} &:\equiv |A|_{y}^{fw} \otimes |B|_{w}^{gy} \\ |A \otimes B|_{f,g}^{x,v} &:\equiv |A|_{fv}^{x} \otimes |B|_{gx}^{v} \\ |\exists z A(z)|_{f}^{x,z} &:\equiv |A(z)|_{fz}^{x} \\ |\forall z A(z)|_{y,z}^{f} &:\equiv |A(z)|_{y}^{fz} \\ |?A|_{y}^{f} &:\equiv ?|A|_{y}^{fy} \\ |!A|_{f}^{x} &:\equiv !|A|_{fx}^{x} \end{aligned}$$

- Interpretation of LL



#### Linear negation

 $|A^{\perp}|_x^y \equiv (|A|_y^x)^{\perp}$ 

# **Linear implication** $|A \multimap B|_{x,w}^{f,g} \equiv |A|_{gw}^{x} \multimap |B|_{w}^{fx}$ $(A \multimap B \equiv A^{\perp} \otimes B)$

Intuitionistic implication  $(A \to B \equiv !A \multimap B)$  $|A \to B|_{x,w}^{f,g} \equiv |A|_{gxw}^x \to |B|_w^{fx}$ 

イロト 不得 トイヨト イヨト ヨー ろくで

- Interpretation of LL

### Consequences

#### Linear negation

 $|A^{\perp}|_x^y \equiv (|A|_y^x)^{\perp}$  Game  $A^{\perp}$  is the same as A but with roles reversed

Linear implication  $(A \multimap B \equiv A^{\perp} \otimes B)$  $|A \multimap B|_{x,w}^{f,g} \equiv |A|_{gw}^{x} \multimap |B|_{w}^{fx}$ 

Intuitionistic implication  $(A \to B \equiv !A \multimap B)$  $|A \to B|_{x,w}^{f,g} \equiv |A|_{gxw}^x \to |B|_w^{fx}$ 

・ロト・日本・日本・日本・日本・日本

- Interpretation of LL

### Consequences

#### Linear negation

$$\label{eq:alpha} \begin{split} |A^{\perp}|_x^y &\equiv (|A|_y^x)^{\perp}\\ \text{Game } A^{\perp} \text{ is the same as } A \text{ but with roles reversed} \end{split}$$

**Linear implication**   $|A \multimap B|_{x,w}^{f,g} \equiv |A|_{gw}^{x} \multimap |B|_{w}^{fx}$ Playing game *B* relative to game *A* 

Intuitionistic implication  $(A \to B \equiv !A \multimap B)$  $|A \to B|_{x,w}^{f,g} \equiv |A|_{gxw}^x \to |B|_w^{fx}$ 

・ロト・日本・日本・日本・日本・日本

- Interpretation of LL

### Consequences

#### Linear negation

$$\label{eq:alpha} \begin{split} |A^{\perp}|_x^y &\equiv (|A|_y^x)^{\perp}\\ \text{Game } A^{\perp} \text{ is the same as } A \text{ but with roles reversed} \end{split}$$

**Linear implication**   $|A \multimap B|_{x,w}^{f,g} \equiv |A|_{gw}^{x} \multimap |B|_{w}^{fx}$ Playing game *B* relative to game *A* 

 $\begin{array}{ll} \mbox{Intuitionistic implication} & (A \to B \ \equiv \ !A \multimap B) \\ |A \to B|^{f,g}_{x,w} \equiv |A|^x_{gxw} \to |B|^{fx}_w \\ \mbox{Playing game } B \ \mbox{relative to (multiple copies of) game } A \end{array}$ 

— Dialectica Interpretation of LL

— Interpretation of LL

# Soundness

#### Theorem

If  $LL \vdash A$  then  $qfLL^{\omega}$  proves that Eloise has winning move in game  $|A|_y^x$ .

#### Theorem

If  $LL \vdash A$  then  $qfLL^{\omega} \vdash |A|_{u}^{t}$  for some term t.

Dialectica Interpretation of LL

Interpretation of IL

### Relation to Interpretation of IL

IL  $\rightarrow$  qfIL<sup> $\omega$ </sup> Dialectica interpretation

Interpretation of IL

### Relation to Interpretation of IL



Interpretation of IL

#### Relation to Interpretation of IL



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Dialectica Interpretation of LL

— Characterisation

#### Characterisation

#### • A provable in LL $\Rightarrow$ Eloise has winning move



- Dialectica Interpretation of LL
  - Characterisation

### Characterisation

• A provable in LL  $\Rightarrow$  Eloise has winning move

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

• What about the other way around?

- Dialectica Interpretation of LL
  - Characterisation

### Characterisation

- A provable in LL  $\Rightarrow$  Eloise has winning move
- What about the other way around?
- For which extension of LL do we have the converse?

ション ふゆ アメリア ショー ひゃう

A

Dialectica Interpretation of LL

— Characterisation

### Characterisation

Dialectica Interpretation of LL

Characterisation

## Characterisation



A

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Dialectica Interpretation of LL

Characterisation

## Characterisation



A

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Dialectica Interpretation of LL

— Characterisation

## Characterisation



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Dialectica Interpretation of LL

Characterisation

## Characterisation



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dialectica Interpretation of LL

Characterisation

## Characterisation



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

— Dialectica Interpretation of LL

Characterisation

## Characterisation



▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

Dialectica Interpretation of LL

Characterisation

### Simultaneous quantifier

$$\frac{A_0(a_0, y_0), \dots, A_n(a_n, y_n)}{\mathbf{\mathcal{I}}_{y_0}^{x_0} A_0(x_0, y_0), \dots, \mathbf{\mathcal{I}}_{y_n}^{x_n} A_n(x_n, y_n)}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

(\*)  $y_i$  may only appear free in the terms  $a_j$ , for  $j \neq i$ ;

Characterisation

# **New Principles**

#### • Sequential choice

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへで

— Characterisation

# **New Principles**

#### • Sequential choice

 $\forall z \pmb{\exists}_y^x A(x,y,z) \multimap \pmb{\exists}_{y,z}^f A(fz,y,z)$ 

#### Parallel choice

 $\mathbf{\mathcal{Y}}_{\!\!y}^{x}A(x)\otimes\mathbf{\mathcal{Y}}_{\!w}^{v}B(v)\multimap\mathbf{\mathcal{Y}}_{\!\!y,w}^{f,g}(A(fw)\otimes B(gy))$ 

— Characterisation

# **New Principles**

#### • Sequential choice

 $\forall z \mathbf{\Xi}_y^x A(x,y,z) \multimap \mathbf{\Xi}_{y,z}^f A(fz,y,z)$ 

# 

Markov principle

 $\forall x! A_{\mathsf{qf}} \multimap ! \forall x A_{\mathsf{qf}}$ 

— Characterisation

# **New Principles**

### Sequential choice

 $\forall z \Xi_y^x A(x,y,z) \multimap \Xi_{y,z}^f A(fz,y,z)$ 

# 

Markov principle

 $\forall x! A_{\mathsf{qf}} \multimap ! \forall x A_{\mathsf{qf}}$ 

Trump advantage

$$! \exists \mathcal{Y}_y^x A \multimap \exists x! \forall y A$$

— Dialectica Interpretation of LL

Characterisation



#### Theorem

These principles are necessary and sufficient for deriving the equivalence between A and its interpretation  $\exists f_u^x |A|_u^x$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

# Outline

#### Introduction

- Contraction
- Linear Logic

#### 2 Dialectica Interpretation of LL

- Interpretation of LL
- Interpretation of IL
- Characterisation

#### Uses of LL Interpretation

- Unification
- Hybrid Interpretations

イロト 不得 トイヨト イヨト ヨー ろくで

Unification

### Unifying Functional Interpretations

#### Dialectica

$$\begin{array}{rccc} |!A|_{f}^{x} & :\equiv & !|A|_{fx}^{x} \\ |?A|_{y}^{f} & :\equiv & ?|A|_{y}^{fy} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Unification

# Unifying Functional Interpretations

Dialectica

$$\begin{aligned} |!A|_f^x &:\equiv & !|A|_{fx}^x \\ |?A|_y^f &:\equiv & ?|A|_y^{fy} \end{aligned}$$

Diller-Nahm

$$|!A|_f^x :\equiv !\forall y \in fx |A|_y^x$$
$$|?A|_y^f :\equiv ?\exists x \in fy |A|_y^x$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- Unification

# Unifying Functional Interpretations

Dialectica

$$\begin{aligned} |!A|_f^x &:\equiv & !|A|_{fx}^x \\ |?A|_y^f &:\equiv & ?|A|_y^{fy} \end{aligned}$$

Diller-Nahm

$$|!A|_{f}^{x} :\equiv !\forall y \in fx |A|_{y}^{x}$$
$$|?A|_{y}^{f} :\equiv ?\exists x \in fy |A|_{y}^{x}$$

Modified realizability

$$\begin{split} |!A|^x & :\equiv \ !\forall y |A|_y^x \\ |?A|_y & :\equiv \ ?\exists x |A|_y^x \end{split}$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Hybrid Interpretations

# Hybrid interpretations

- Linear logic modalities are not canonical
- Make use of multi-modal LL  $(?_g, ?_d, ?_k)$  with

$$\frac{\Gamma, ?_g A}{\Gamma, ?_d A} \qquad \qquad \frac{\Gamma, ?_d A}{\Gamma, ?_k A}$$
Hybrid Interpretations

# Hybrid interpretations

- Linear logic modalities are not canonical
- Make use of multi-modal LL  $(?_g, ?_d, ?_k)$  with

$$\frac{\Gamma, ?_g A}{\Gamma, ?_d A} \qquad \qquad \frac{\Gamma, ?_d A}{\Gamma, ?_k A}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Hybrid interpretation

Hybrid Interpretations

# Hybrid interpretations

- Linear logic modalities are not canonical
- Make use of multi-modal LL  $(?_g, ?_d, ?_k)$  with

$$\frac{\Gamma, ?_g A}{\Gamma, ?_d A} \qquad \qquad \frac{\Gamma, ?_d A}{\Gamma, ?_k A}$$

Hybrid interpretation

Possible to deal with proofs involving both MP and EXT

$$\begin{array}{ll} \mathsf{MP} & : & ?_g \exists x A_{\mathsf{qf}}(x) \to \exists x ?_g A_{\mathsf{qf}}(x) \\ \mathsf{EXT} & : & !_k \forall n (\alpha n = \beta n) \to Y \alpha = Y \beta \end{array}$$

### References

- A Dialectica-like model of linear logic V. de Paiva, LNCS 389, 1989
- The Dialectica interpretation of first-order classical linear logic
  M. Shirahata, Theory and Applications of Categories, 2006
- Modified realizability interpretation of classical linear logic
  P. Oliva, LICS, 2007
- Computational interpretations of classical linear logic
  P. Oliva, LNCS 4576, 2007
- An analysis of Gödel's Dialectica interpretation via linear logic
  P. Oliva, Dialectica (to appear)

イロト イヨト イヨト イヨト ヨー わへで

Hybrid functional interpretations
 M-D. Hernest and P. Oliva, CiE, 2008

Hybrid Interpretations

# Usual Dialectica

#### Definition (Dialectica Interpretation)

$$\begin{aligned} (A \wedge B)_D(x, v; y, w) &:\equiv A_D(x; y) \wedge B_D(v; w) \\ (A \vee B)_D(x, v, z; y, w) &:\equiv A_D(x; y) \diamond_z B_D(v; w) \\ (A \to B)_D(f, g; x, w) &:\equiv A_D(x; fwx) \to B_D(gx; w) \\ (\forall z A)_D(f; y, z) &:\equiv A_D(fz; y) \\ (\exists z A)_D(x, z; y) &:\equiv A_D(x; y). \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Hybrid Interpretations

## Reformulation of Dialectica

### Definition (Reformulation of Dialectica Interpretation)

$$\begin{aligned} (A \wedge B)_D(x, v; y, w) &:\equiv A_D(x; y) \wedge B_D(v; w) \\ (A \vee B)_D(x, v, z; y, w) &:\equiv A_D(x; y) \diamondsuit_z B_D(v; w) \\ (A \to B)_D(f, g; x, w) &:\equiv A_D(x; fwx) \to B_D(gx; w) \\ (\forall z A)_D(f; y, z) &:\equiv A_D(fz; y) \\ (\exists z A)_D(x, z; y) &:\equiv A_D(x; y). \end{aligned}$$

Hybrid Interpretations

## Reformulation of Dialectica

### Definition (Reformulation of Dialectica Interpretation)

$$\begin{array}{lll} (A \wedge B)_D(x,v;y,w,z) &:\equiv & A_D(x;y) \diamondsuit_z B_D(v;w) \\ (A \vee B)_D(x,v,z;y,w) &:\equiv & A_D(x;y) \diamondsuit_z B_D(v;w) \\ (A \to B)_D(f,g;x,w) &:\equiv & A_D(x;fwx) \to B_D(gx;w) \\ (\forall zA)_D(f;y,z) &:\equiv & A_D(fz;y) \\ (\exists zA)_D(x,z;y) &:\equiv & A_D(x;y). \end{array}$$

Hybrid Interpretations

## Reformulation of Dialectica

#### Definition (Reformulation of Dialectica Interpretation)

 $\begin{aligned} (A \wedge B)_D(x, v; y, w, z) &:\equiv A_D(x; y) \diamondsuit_z B_D(v; w) \\ (A \vee B)_D(x, v, z; y, w) &:\equiv A_D(x; y) \diamondsuit_z B_D(v; w) \\ (A \to B)_D(f, g; x, w) &:\equiv A_D(x; fwx) \to B_D(gx; w) \\ (\forall z A)_D(f; y, z) &:\equiv A_D(fz; y) \\ (\exists z A)_D(x, z; f) &:\equiv A_D(x; fz). \end{aligned}$ 

- Hybrid Interpretations

### Reformulation of Dialectica

### Even with this reformulation we have:



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで