Paulo Oliva

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

(Joint work with Martín Escardó)

GKLI, Munich 23 January 2008

ヘロト ヘロト ヘビト ヘビト

э

Summary

Better way of understanding modified bar recursion (*via selection functionals*)

Issues of efficiency

(in case we ever need bar recursion in practise)

Outline

Introduction

- Role of contraction
- Dialectica interpretation
- 2 Modified Bar Recursion
 - Selection functions
 - BBC functional

Other Variants

- Berger
- Escardo

Outline

Introduction

- Role of contraction
- Dialectica interpretation

2 Modified Bar Recursion

- Selection functions
- BBC functional

3 Other Variants

- Berger
- Escardo

Role of contraction

Importance of contraction

States of the Royal Society
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Role of contraction

Importance of contraction

 $\begin{array}{rcccc} Kxy & \mapsto & x \\ Sxyz & \mapsto & xz(yz) \end{array}$

Role of contraction

Importance of contraction

 $\begin{array}{rccc} Kxy & \mapsto & x \\ Sxyz & \mapsto & xz(yz) \end{array}$

Role of contraction

Importance of contraction

 $\begin{array}{rccc} Kxy & \mapsto & x & (\text{weakening}) \\ Sxyz & \mapsto & xz(yz) & (\text{contraction}) \end{array}$

Role of contraction

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$

Cut elimination: cut rule is admissible

Role of contraction

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$ An *elimination of contractions* procedure

Cut elimination: cut rule is admissible

Bole of contractio

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$ An *elimination of contractions* procedure

Cut elimination: cut rule is admissible $(\lambda x.t[x])r \mapsto t[r]$

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$ An *elimination of contractions* procedure

Cut elimination: cut rule is admissible $(\lambda x.t[x])r \mapsto t[r]$ $(\lambda x.t[x,x])r \mapsto t[r,r]$

Role of contraction

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$ An *elimination of contractions* procedure

Cut elimination: cut rule is admissible $(\lambda x.t[x])r \mapsto t[r]$ $(\lambda x.t[x,x])r \mapsto t[r,r]$ $(\lambda x.t[x,x])r \mapsto (\lambda x_0\lambda x_1.t[x_0,x_1])rr$

Role of contraction

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A(t_i)$ An *elimination of contractions* procedure

Cut elimination: cut rule is admissible $(\lambda x.t[x])r \mapsto t[r]$ $(\lambda x.t[x,x])r \mapsto t[r,r]$ $(\lambda x.t[x,x])r \mapsto (\lambda x_0\lambda x_1.t[x_0,x_1])rr$ Becomes an *elimination of contractions* procedure

イロト 不得下 不良下 不良下

Role of contraction

Importance of contraction

What are negative translations useful for?

Role of contraction

Importance of contraction

What are negative translations useful for?

Eliminate uses of classical logic (law of excluded middle)

Role of contraction

Importance of contraction

What are negative translations useful for?

Eliminate uses of classical logic (law of excluded middle)

How do they do it?

- Role of contraction

Importance of contraction

What are negative translations useful for?

Eliminate uses of classical logic (law of excluded middle)

How do they do it?

Move contractions from the conclusion to the premise

Introduction

Role of contraction

Classical theorem: $A \wedge B, \neg A \vee \neg B$

$$\frac{\frac{A, \neg A \qquad B, \neg B}{A \land B, \neg A, \neg B} (\land \mathsf{I})}{\frac{A \land B, \neg A \lor \neg B, \neg B}{A \land B, \neg A \lor \neg B, \neg B} (\lor \mathsf{I})} \frac{\frac{A, \neg A \lor \neg B, \neg A \lor \neg B}{A \land B, \neg A \lor \neg B} (\lor \mathsf{I})}{(\land \mathsf{Con})}$$

・ロト ・西ト ・ヨト ・ヨト

Introduction

Role of contraction

Classical theorem: $A \wedge B, \neg A \vee \neg B$

$$\frac{\frac{A, \neg A \qquad B, \neg B}{A \land B, \neg A, \neg B} (\land \mathsf{I})}{\frac{A \land B, \neg A, \neg B}{A \land B, \neg A \lor \neg B, \neg B} (\lor \mathsf{I})}$$
$$\frac{\frac{A, \neg A \land B, \neg A \lor \neg B, \neg A \lor \neg B}{A \land B, \neg A \lor \neg B} (\land \mathsf{I})}{A \land B, \neg A \lor \neg B} (\mathsf{con})$$

・ロト ・西ト ・ヨト ・ヨト

Introduction

Role of contraction

Intuitionistic version:
$$\neg(\neg A \lor \neg B) \rightarrow \neg \neg(A \land B)$$

$$\frac{[\neg(A \land B)]_{\delta}}{[\neg A \land B]_{\beta}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{A \land B}}{\frac{\bot}{\neg A \land \neg B}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{A \land B}}{\neg(\neg A \lor \neg B)} \frac{\frac{\bot}{\neg A \lor \neg B}}{\neg(\neg A \lor \neg B)} \frac{[A]_{\alpha} \quad [B]_{\beta}}{\neg(\neg A \lor \neg B)}}{\frac{\bot}{\neg A \lor \neg B}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{\neg(\neg A \lor \neg B)} \frac{[A]_{\alpha} \quad [B]_{\beta}}{\neg(\neg A \lor \neg B)}}{\frac{\bot}{\neg A \lor \neg B}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{\neg(\neg A \lor \neg B)}$$

THE ROYAL

æ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Introduction

Role of contraction

Intuitionistic version:
$$\neg(\neg A \lor \neg B) \rightarrow \neg \neg(A \land B)$$

$$\frac{[\neg(A \land B)]_{\delta}}{[\neg A \land B]_{\beta}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{A \land B}}{\frac{\bot}{\neg A \land \neg B}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{A \land B}}{\neg (\neg A \lor \neg B)} \frac{\frac{\bot}{\neg A \lor \neg B}}{[\neg A \lor \neg B]} \frac{[A]_{\alpha} \quad [B]_{\beta}}{[\neg A \lor \neg B]}}{\frac{\bot}{\neg A \lor \neg B}} \frac{[A]_{\alpha} \quad [B]_{\beta}}{[\neg A \lor \neg B]} \frac{[A]_{\alpha} \quad [B]_{\beta}}{[\neg A \lor \neg B]}}{\frac{\bot}{\neg \neg (A \land B)}} (\delta)$$

THE ROYAL

æ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Role of contraction

 $\neg(\neg A \lor \neg B) \to \neg \neg(A \land B)$

Role of contraction

Key principle

$$\neg(\neg A \lor \neg B) \to \neg \neg(A \land B)$$

... and using induction

$$\neg \exists b \le n \neg A(b) \to \neg \neg \forall b \le n A(b)$$

Role of contraction

Infinite pigeonhole principle

$$\forall n \forall f^{\mathbb{N} \to n} \exists b \leq n \underbrace{\forall x \exists y > x(fy = b)}_{\{y : fy = b\} \text{ infinite}}$$

Follows (classically) from BC for Π_1^0 -formulas. Between Σ_2^0 and Σ_1^0 induction.

Introduction

Role of contraction

Infinitary form

What about

$$\neg \forall n A(n) \to \exists n \neg A(n)$$

- Role of contraction

Infinitary form

What about

$$\neg \forall n A(n) \to \exists n \neg A(n)$$

Infinite number of contractions.

Role of contraction

Infinitary form

What about

$$\neg \forall n A(n) \to \exists n \neg A(n)$$

Infinite number of contractions.

Can't trivially move it to the premise

$$\neg \exists n \neg A(n) \to \neg \neg \forall n A(n)$$

- Role of contraction

Infinitary form

What about

$$\neg \forall n A(n) \to \exists n \neg A(n)$$

Infinite number of contractions.

Can't trivially move it to the premise

$$\neg \exists n \neg A(n) \to \neg \neg \forall n A(n)$$

Corresponds to infinite number of LEM applications

... as with comprehension functions

$$\exists f \forall n (fn = 0 \leftrightarrow A(n))$$

イロト イロト イヨト イヨト

Role of contraction

How do we deal with infinitely many applications?

Role of contraction

How do we deal with infinitely many applications?

In practise, only a finitary portion of that is used!

Dialectica interpretation

Interpret using Dialectica

Dialectica interpretation of DNS

$$\neg \exists n \neg A(n) \to \neg \neg \forall n A(n)$$

leads to a set of equations (on $\Psi, \Phi, \Delta)$

$$n \qquad \stackrel{\mathbb{N}}{=} \quad \Psi f$$
$$f_n \qquad \stackrel{\rho}{=} \quad \Phi_n g_n$$
$$g_n(f_n) \quad \stackrel{\tau}{=} \quad \Delta f$$

A D F A B F A B F A B F

Possible to solve (no need for all solutions f)

Dialectica interpretation

Interpret using Dialectica

Dialectica interpretation of DNS

$$\neg \exists n \neg A(n) \to \neg \neg \forall n A(n)$$

leads to a set of equations (on $\Psi, \Phi, \Delta)$

$$n \qquad \stackrel{\mathbb{N}}{=} \quad \Psi f$$
$$f_n \qquad \stackrel{\rho}{=} \quad \Phi_n g_n$$
$$g_n(f_n) \quad \stackrel{\tau}{=} \quad \Delta f$$

A D F A B F A B F A B F

Possible to solve (no need for all solutions f) What about a direct interpretation (realizability)?

Outline

1 Introduction

- Role of contraction
- Dialectica interpretation
- Modified Bar Recursion
 Selection functions
 BBC functional
 - BBC functional

Other Variants

- Berger
- Escardo

- Selection functions

Axiom of choice

$$\forall x^{\tau} \exists y^{\rho} A(x,y) \to \exists f^{\tau \to \rho} \forall x A(x,fx)$$

Equivalent to:

the Cartesian product of an arbitrary collection of non-empty sets is non-empty

イロト イロト イヨト イヨト

Selection functions

Axiom of **countable** choice

$$\forall x^{\mathbb{N}} \exists y^{\rho} A(x, y) \to \exists f^{\mathbb{N} \to \rho} \forall x A(x, fx)$$

Equivalent to:

the Cartesian product of a **countable** collection of non-empty sets is non-empty

イロト イロト イヨト イヨト

- Selection functions

Definition (Escardo'07)

A computable functional

$$\Psi \quad : \quad (A \to \mathbb{B}) \to A$$

is called a *selection functional* for A if for any predicate

$$Y \quad : \quad A \to \mathbb{B}$$

 $\Psi(Y) \in Y$ whenever Y is not empty.

- Selection functions

Selection functions

Problem: Given a family of selection functions

$$\Phi_n : (A(n) \to \mathbb{B}) \to A(n)$$

how do we produce a selection function

$$\Psi\,:\,(\forall nA(n)\to\mathbb{B})\to\forall nA(n)$$

for the product?

Selection functions

Problem: Given a family of selection functions

$$\Phi_n : (A(n) \to \mathbb{B}) \to A(n)$$

how do we produce a selection function

$$\Psi \,:\, (\forall n A(n) \to \mathbb{B}) \to \forall n A(n)$$

for the product? Define

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x^{A(n)}. \underbrace{Y(\Psi_Y(s * \langle n, x \rangle))}_{\forall nA(n)})$$

Assume continuity and take $\Psi_Y()$.

(日) (四) (三) (三) (三)

- Selection functions

(General) selection functions

Problem: Given a family of (general) selection functions

$$\Phi_n \,:\, (A(n) \to \mathbb{N}) \to A(n)$$

how do we produce a (general) selection function

$$\Psi \, : \, (\forall n A(n) \to \mathbb{N}) \to \forall n A(n)$$

for the product? Define

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x^{A(n)}. \underbrace{Y(\underbrace{\Psi_Y(s * \langle n, x \rangle)}_{\forall nA(n)}))}_{\forall nA(n)}$$

Assume continuity and take $\Psi_Y()$.

(日) (四) (三) (三) (三)

Selection functions

DNS

Has exactly the type of DNS

$$\neg \exists n \neg A(n) \to \neg \neg \forall n A(n)$$

i.e.

$$\forall n(\underbrace{\neg A(n) \to A(n)}_{\Phi_n}) \to \underbrace{\neg \forall nA(n)}_{Y} \to \forall nA(n)$$

ヘロト ヘロト ヘヨト ヘヨト

- Modified Bar Recursion

BBC functional

BBC functional

Outline

Introduction

- Role of contraction
- Dialectica interpretation
- Modified Bar Recursion
 Selection functions
 BBC functional

- Berger
- Escardo

Possibilites

Option 1 (BBC)

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(s * \langle n, x \rangle)))$$

Option 2 (U. Berger)

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(s * \langle |s|, x \rangle)))$$

Option 3 (M. Escardo) $\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(\overline{\Psi_Y(s)}(n) * \langle n, x \rangle)))$

イロト イヨト イヨト イヨト

· Berger

BBC functional

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(s * \langle n, x \rangle)))$$

イロト イロト イヨト イヨト

- Efficient
- Not easy to prove total
- Not easy to prove it is a realiser

Other Variants

Berger

Berger's functional

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(s * \langle |s|, x \rangle)))$$

- Not very efficient
- Easy to prove total (by bar induction)
- Easy to prove it is a realiser (by bar induction)

— Other Variants

Escardo's functional

$$\Psi_Y(s) = s @ \lambda n. \Phi_n(\lambda x. Y(\Psi_Y(\overline{\Psi_Y(s)}(n) * \langle n, x \rangle)))$$

Efficient

- Easy to prove total (by course-of-value bar induction)
- Easy to prove it is a realiser (by course-of-value bar induction)

Other Variants

Escardo

Theorem

Escardo's is primitive recursively definable in Berger's

Other Variants

Escardo

Theorem

Escardo's is primitive recursively definable in Berger's

Other connections still open!

Outline

Introduction

- Role of contraction
- Dialectica interpretation
- Modified Bar Recursion
 Selection functions
 - BBC functional

Other Variants

- Berger
- Escardo

Summary

- Motivation of modified bar recursion via selection functions
- Three variants of modified bar recursion
- Issues of efficiency and easiness of totality proof

References

- Provably recursive functionals of analysis Spector, Proc. Sym. in Pure Maths, 5:1–27, 1962
- On the computational content of the axiom of choice Berardi, Bezem and Coquand, JSL, 63(2):600–622, 1998
- Modified bar recursion and classical dependent choice Berger and Oliva, LNL, 20:89–107, 2005

Modified bar recursion

Berger and Oliva, MSCS, 16:163–183, 2006

• On variants on modified bar recursion Escardo and Oliva, in preparation