Variants of Modified Bar Recursion

Paulo Oliva

+ +

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)
(Joint work with Martín Escardó)
GKLI, Munich
23 January 2008

Summary

Better way of understanding modified bar recursion (via selection functionals)

Issues of efficiency
(in case we ever need bar recursion in practise)

Outline

(1) Introduction

- Role of contraction
- Dialectica interpretation
(2) Modified Bar Recursion
- Selection functions
- BBC functional
(3) Other Variants
- Berger
- Escardo
(4) Conclusions

Outline

(1) Introduction

- Role of contraction
- Dialectica interpretation
(2) Modified Bar Recursion
- Selection functions
- BBC functional
(3) Other Variants
- Berger
- Escardo

4 Conclusions

Importance of contraction

Importance of contraction

$$
\begin{array}{lll}
K x y & \mapsto & x \\
\text { Sxyz } & \mapsto & x z(y z)
\end{array}
$$

Importance of contraction

$$
\begin{array}{lll}
\text { Kxy } & \mapsto & x \\
\text { Sxyz } & \mapsto & x z(y z)
\end{array}
$$

Importance of contraction

Kxy	\mapsto	x	(weakening)
$S x y z$	\mapsto	$x z(y z)$	(contraction)

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$

Cut elimination: cut rule is admissible

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$
An elimination of contractions procedure

Cut elimination: cut rule is admissible

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$
An elimination of contractions procedure

Cut elimination: cut rule is admissible $(\lambda x . t[x]) r \mapsto t[r]$

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$
An elimination of contractions procedure

Cut elimination: cut rule is admissible
$(\lambda x . t[x]) r \mapsto t[r]$
$(\lambda x . t[x, x]) r \mapsto t[r, r]$

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$
An elimination of contractions procedure

Cut elimination: cut rule is admissible
$(\lambda x . t[x]) r \mapsto t[r]$
$(\lambda x . t[x, x]) r \mapsto t[r, r]$
$(\lambda x . t[x, x]) r \mapsto\left(\lambda x_{0} \lambda x_{1} . t\left[x_{0}, x_{1}\right]\right) r r$

Importance of contraction

Herbrand theorem: if $\exists x A(x)$ then $\bigvee A\left(t_{i}\right)$
An elimination of contractions procedure

Cut elimination: cut rule is admissible
$(\lambda x . t[x]) r \mapsto t[r]$
$(\lambda x . t[x, x]) r \mapsto t[r, r]$
$(\lambda x . t[x, x]) r \mapsto\left(\lambda x_{0} \lambda x_{1} . t\left[x_{0}, x_{1}\right]\right) r r$
Becomes an elimination of contractions procedure

Importance of contraction

What are negative translations useful for?

Importance of contraction

What are negative translations useful for?
Eliminate uses of classical logic (law of excluded middle)

Importance of contraction

What are negative translations useful for?
Eliminate uses of classical logic (law of excluded middle)

How do they do it?

Importance of contraction

What are negative translations useful for?
Eliminate uses of classical logic (law of excluded middle)

How do they do it?
Move contractions from the conclusion to the premise

Classical theorem: $A \wedge B, \neg A \vee \neg B$

$$
\begin{gathered}
\frac{A, \neg A \quad B, \neg B}{A \wedge B, \neg A, \neg B}(\wedge \mathrm{I}) \\
\frac{\frac{A \wedge B, \neg A \vee \neg B, \neg B}{A \wedge B, \neg A \vee \neg B, \neg A \vee \neg B}(\vee \mathrm{I})}{A \wedge B, \neg A \vee \neg B}(\mathrm{l}) \\
(\mathrm{con})
\end{gathered}
$$

Classical theorem: $A \wedge B, \neg A \vee \neg B$

$$
\begin{gathered}
\frac{A, \neg A \quad B, \neg B}{A \wedge B, \neg A, \neg B}(\wedge \mathrm{I}) \\
\frac{\frac{A \wedge B, \neg A \vee \neg B, \neg B}{A \wedge B, \neg A \vee \neg B, \neg A \vee \neg B}(\vee \mathrm{I})}{A \wedge B, \neg A \vee \neg B}(\mathrm{l}) \\
(\mathrm{con})
\end{gathered}
$$

Intuitionistic version: $\neg(\neg A \vee \neg B) \rightarrow \neg \neg(A \wedge B)$

$$
\begin{aligned}
& \frac{[\neg(A \wedge B)]_{\delta} \frac{[A]_{\alpha}[B]_{\beta}}{A \wedge B}}{\frac{\frac{\perp}{\neg A}(\alpha)}{\neg A \vee \neg B}} \\
& \frac{\frac{\perp^{\circ}}{\neg A \vee \neg B}(\beta)}{\neg(\neg A \vee \neg B)} \\
& \frac{\perp}{\neg \neg(A \wedge B)}(\delta)
\end{aligned}
$$

Intuitionistic version: $\neg(\neg A \vee \neg B) \rightarrow \neg \neg(A \wedge B)$

$$
\begin{aligned}
& \frac{[\neg(A \wedge B)]_{\delta} \frac{[A]_{\alpha}[B]_{\beta}}{A \wedge B}}{\frac{\frac{\perp}{\neg A}(\alpha)}{\neg A \vee \neg B}} \\
& \frac{\frac{\perp^{\neg B}(\beta)}{\neg A \vee \neg B}}{\frac{\neg(\neg A \vee \neg B)}{\neg \neg(A \wedge B)}(\delta)}
\end{aligned}
$$

Key principle

$$
\neg(\neg A \vee \neg B) \rightarrow \neg \neg(A \wedge B)
$$

Key principle

$$
\neg(\neg A \vee \neg B) \rightarrow \neg \neg(A \wedge B)
$$

... and using induction

$$
\neg \exists b \leq n \neg A(b) \rightarrow \neg \neg \forall b \leq n A(b)
$$

Example

Infinite pigeonhole principle

$$
\forall n \forall f^{\mathbb{N} \rightarrow n} \exists b \leq n \underbrace{\forall x \exists y>x(f y=b)}_{\{y: f y=b\}}
$$

Follows (classically) from BC for Π_{1}^{0}-formulas.
Between Σ_{2}^{0} and Σ_{1}^{0} induction.

Infinitary form

What about

$$
\neg \forall n A(n) \rightarrow \exists n \neg A(n)
$$

Infinitary form

What about

$$
\neg \forall n A(n) \rightarrow \exists n \neg A(n)
$$

Infinite number of contractions.

Infinitary form

What about

$$
\neg \forall n A(n) \rightarrow \exists n \neg A(n)
$$

Infinite number of contractions.
Can't trivially move it to the premise

$$
\neg \exists n \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

Infinitary form

What about

$$
\neg \forall n A(n) \rightarrow \exists n \neg A(n)
$$

Infinite number of contractions.
Can't trivially move it to the premise

$$
\neg \exists n \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

Corresponds to infinite number of LEM applications
... as with comprehension functions

$$
\exists f \forall n(f n=0 \leftrightarrow A(n))
$$

Informally

How do we deal with infinitely many applications?

Informally

How do we deal with infinitely many applications?
In practise, only a finitary portion of that is used!

Interpret using Dialectica

Dialectica interpretation of DNS

$$
\neg \exists n \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

leads to a set of equations (on Ψ, Φ, Δ)

$$
\begin{array}{lll}
n & \stackrel{\mathbb{N}}{=} \Psi f \\
f_{n} & \stackrel{\rho}{=} & \Phi_{n} g_{n} \\
g_{n}\left(f_{n}\right) & \stackrel{\tau}{=} & \Delta f
\end{array}
$$

Possible to solve (no need for all solutions f)

Interpret using Dialectica

Dialectica interpretation of DNS

$$
\neg \exists n \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

leads to a set of equations (on Ψ, Φ, Δ)

$$
\begin{array}{ll}
n & \stackrel{\mathbb{N}}{=} \Psi f \\
f_{n} & \stackrel{\rho}{=} \Phi_{n} g_{n} \\
g_{n}\left(f_{n}\right) & \stackrel{\tau}{=} \Delta f
\end{array}
$$

Possible to solve (no need for all solutions f)
What about a direct interpretation (realizability)?

Outline

(1) Introduction

- Role of contraction
- Dialectica interpretation
(2) Modified Bar Recursion
- Selection functions
- BBC functional
(3) Other Variants
- Berger
- Escardo

4 Conclusions

Axiom of choice

$$
\forall x^{\tau} \exists y^{\rho} A(x, y) \rightarrow \exists f^{\tau \rightarrow \rho} \forall x A(x, f x)
$$

Equivalent to:

the Cartesian product of an arbitrary collection of non-empty sets is non-empty

Axiom of countable choice

$$
\forall x^{\mathbb{N}} \exists y^{\rho} A(x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \rho} \forall x A(x, f x)
$$

Equivalent to:

the Cartesian product of a countable collection of non-empty sets is non-empty

Selection functions

Definition (Escardo'07)

A computable functional

$$
\Psi \quad: \quad(A \rightarrow \mathbb{B}) \rightarrow A
$$

is called a selection functional for A if for any predicate

$$
Y: A \rightarrow \mathbb{B}
$$

$\Psi(Y) \in Y$ whenever Y is not empty.

Selection functions

Problem: Given a family of selection functions

$$
\Phi_{n}:(A(n) \rightarrow \mathbb{B}) \rightarrow A(n)
$$

how do we produce a selection function

$$
\Psi:(\forall n A(n) \rightarrow \mathbb{B}) \rightarrow \forall n A(n)
$$

for the product?

Selection functions

Problem: Given a family of selection functions

$$
\Phi_{n}:(A(n) \rightarrow \mathbb{B}) \rightarrow A(n)
$$

how do we produce a selection function

$$
\Psi:(\forall n A(n) \rightarrow \mathbb{B}) \rightarrow \forall n A(n)
$$

for the product? Define

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}(\lambda x^{A(n)} \cdot \overbrace{Y(\underbrace{\Psi_{Y}(s *\langle n, x\rangle)}_{\forall n A(n)})}^{\mathbb{B}})
$$

Assume continuity and take $\Psi_{Y}()$.

(General) selection functions

Problem: Given a family of (general) selection functions

$$
\Phi_{n}:(A(n) \rightarrow \mathbb{N}) \rightarrow A(n)
$$

how do we produce a (general) selection function

$$
\Psi:(\forall n A(n) \rightarrow \mathbb{N}) \rightarrow \forall n A(n)
$$

for the product? Define

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}(\lambda x^{A(n)} \cdot \overbrace{Y(\underbrace{\Psi_{Y}(s *\langle n, x\rangle)}_{\forall n A(n)})}^{\mathbb{N}})
$$

Assume continuity and take $\Psi_{Y}()$.

DNS

Has exactly the type of DNS

$$
\neg \exists n \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

i.e.

$$
\forall n(\underbrace{\neg A(n) \rightarrow A(n)}_{\Phi_{n}}) \rightarrow \underbrace{\neg \forall n A(n)}_{Y} \rightarrow \forall n A(n)
$$

BBC functional

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}(\lambda x^{A(n)} \cdot \overbrace{Y(\underbrace{\Psi_{Y}(s *\langle n, x\rangle)}_{\forall n A(n)})}^{\perp})
$$

Outline

(1) Introduction

- Role of contraction
- Dialectica interpretation
(2) Modified Bar Recursion
- Selection functions
- BBC functional
(3) Other Variants
- Berger
- Escardo

4 Conclusions

Possibilites

Option 1 (BBC)

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}(s *\langle n, x\rangle)\right)\right)
$$

Option 2 (U. Berger)

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}(s *\langle | s|, x\rangle)\right)\right)
$$

Option 3 (M. Escardo)

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}\left(\overline{\Psi_{Y}(s)}(n) *\langle n, x\rangle\right)\right)\right)
$$

BBC functional

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}(s *\langle n, x\rangle)\right)\right)
$$

- Efficient
- Not easy to prove total
- Not easy to prove it is a realiser

Berger's functional

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}(s *\langle | s|, x\rangle)\right)\right)
$$

- Not very efficient
- Easy to prove total (by bar induction)
- Easy to prove it is a realiser (by bar induction)

Escardo's functional

$$
\Psi_{Y}(s)=s @ \lambda n \cdot \Phi_{n}\left(\lambda x \cdot Y\left(\Psi_{Y}\left(\overline{\Psi_{Y}(s)}(n) *\langle n, x\rangle\right)\right)\right)
$$

- Efficient
- Easy to prove total (by course-of-value bar induction)
- Easy to prove it is a realiser (by course-of-value bar induction)

Definability

Theorem

Escardo's is primitive recursively definable in Berger's

Definability

Theorem
 Escardo's is primitive recursively definable in Berger's

Other connections still open!

Outline

(1) Introduction

- Role of contraction
- Dialectica interpretation
(2) Modified Bar Recursion
- Selection functions
- BBC functional
(3) Other Variants
- Berger
- Escardo

4 Conclusions

Summary

- Motivation of modified bar recursion via selection functions
- Three variants of modified bar recursion
- Issues of efficiency and easiness of totality proof

References

- Provably recursive functionals of analysis Spector, Proc. Sym. in Pure Maths, 5:1-27, 1962
- On the computational content of the axiom of choice Berardi, Bezem and Coquand, JSL, 63(2):600-622, 1998
- Modified bar recursion and classical dependent choice Berger and Oliva, LNL, 20:89-107, 2005
- Modified bar recursion

Berger and Oliva, MSCS, 16:163-183, 2006

- On variants on modified bar recursion

Escardo and Oliva, in preparation

