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Variants of Modified Bar Recursion

Summary

Better way of understanding modified bar recursion

(via selection functionals)

Issues of efficiency

(in case we ever need bar recursion in practise)
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Intuitionistic version: ¬(¬A ∨ ¬B) → ¬¬(A ∧B)

[¬(A ∧B)]δ

[A]α [B]β

A ∧B

⊥
(α)
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⊥
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(δ)

¬¬(A ∧B)
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Introduction

Role of contraction

Example

Infinite pigeonhole principle

∀n∀fN→n∃b ≤ n ∀x∃y > x(fy = b)︸ ︷︷ ︸
{y : fy=b} infinite

Follows (classically) from BC for Π0
1-formulas.

Between Σ0
2 and Σ0

1 induction.
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Infinitary form

What about
¬∀nA(n) → ∃n¬A(n)

Infinite number of contractions.

Can’t trivially move it to the premise

¬∃n¬A(n) → ¬¬∀nA(n)

Corresponds to infinite number of LEM applications

... as with comprehension functions

∃f∀n(fn = 0 ↔ A(n))
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Dialectica interpretation

Interpret using Dialectica

Dialectica interpretation of DNS

¬∃n¬A(n) → ¬¬∀nA(n)

leads to a set of equations (on Ψ, Φ, ∆)

n
N
= Ψf

fn
ρ
= Φngn

gn(fn)
τ
= ∆f

Possible to solve (no need for all solutions f)

What about a direct interpretation (realizability)?
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Axiom of choice

∀xτ∃yρA(x, y) → ∃f τ→ρ∀xA(x, fx)

Equivalent to:

the Cartesian product of an arbitrary

collection of non-empty sets is non-empty
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Modified Bar Recursion

Selection functions

Axiom of countable choice

∀xN∃yρA(x, y) → ∃fN→ρ∀xA(x, fx)

Equivalent to:

the Cartesian product of a countable

collection of non-empty sets is non-empty
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Modified Bar Recursion

Selection functions

Selection functions

Definition (Escardo’07)

A computable functional

Ψ : (A → B) → A

is called a selection functional for A if for any predicate

Y : A → B

Ψ(Y ) ∈ Y whenever Y is not empty.
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Modified Bar Recursion

Selection functions

Selection functions

Problem: Given a family of selection functions

Φn : (A(n) → B) → A(n)

how do we produce a selection function

Ψ : (∀nA(n) → B) → ∀nA(n)

for the product?

Define

ΨY (s) = s @ λn.Φn(λxA(n).

B︷ ︸︸ ︷
Y (ΨY (s ∗ 〈n, x〉)︸ ︷︷ ︸

∀nA(n)

))

Assume continuity and take ΨY ().
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Selection functions

(General) selection functions

Problem: Given a family of (general) selection functions

Φn : (A(n) → N) → A(n)

how do we produce a (general) selection function
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for the product? Define
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Modified Bar Recursion

Selection functions

DNS

Has exactly the type of DNS

¬∃n¬A(n) → ¬¬∀nA(n)

i.e.
∀n(¬A(n) → A(n)︸ ︷︷ ︸

Φn

) → ¬∀nA(n)︸ ︷︷ ︸
Y

→ ∀nA(n)
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Modified Bar Recursion

BBC functional

BBC functional

ΨY (s) = s @ λn.Φn(λxA(n).

⊥︷ ︸︸ ︷
Y (ΨY (s ∗ 〈n, x〉)︸ ︷︷ ︸

∀nA(n)

))
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Other Variants

Possibilites

Option 1 (BBC)

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (s ∗ 〈n, x〉)))

Option 2 (U. Berger)

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (s ∗ 〈|s|, x〉)))

Option 3 (M. Escardo)

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (ΨY (s)(n) ∗ 〈n, x〉)))
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Berger

BBC functional

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (s ∗ 〈n, x〉)))

Efficient

Not easy to prove total

Not easy to prove it is a realiser
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Other Variants

Berger

Berger’s functional

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (s ∗ 〈|s|, x〉)))

Not very efficient

Easy to prove total
(by bar induction)

Easy to prove it is a realiser
(by bar induction)
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Other Variants

Escardo

Escardo’s functional

ΨY (s) = s @ λn.Φn(λx.Y (ΨY (ΨY (s)(n) ∗ 〈n, x〉)))

Efficient

Easy to prove total
(by course-of-value bar induction)

Easy to prove it is a realiser
(by course-of-value bar induction)
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Definability

Theorem

Escardo’s is primitive recursively definable in Berger’s

Other connections still open!
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Conclusions

Summary

Motivation of modified bar recursion via selection functions

Three variants of modified bar recursion

Issues of efficiency and easiness of totality proof
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