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Introduction

Functional Interpretations

Main Technique

Functional interpretations:

Dialectica (Gödel’1958)

Diller-Nahm variant (Diller/Nahm’1974)

Monotone Dialectica (Kohlenbach’1990)

Bounded Dialectica (Ferreira/O.’2005)
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Simple Example

Theorem

∀n(f(n+ 1) > f(n))→ ∀k(f(k + 2) > f(k))

Proof.

Assume ∀n(f(n+ 1) > f(n)). From that we get both f(k + 1) > f(k)
and f(k + 2) > f(k + 1). By transitivity we get f(k + 2) > f(k).

Can we compute n given k?
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Dialectica Interpretation

Interpret
∀n(f(n+ 1) > f(n))→ ∀k(f(k + 2) > f(k))

as
∃φ∀k

(
f(φk + 1) > f(φk)→ f(k + 2) > f(k)

)

Witness can be produced, e.g.

φk :=

{
k if f(k + 1) ≤ f(k)

k + 1 otherwise
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Interpret
∀n(f(n+ 1) > f(n))→ ∀k(f(k + 2) > f(k))

as
∃φ∀k
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∀m∈φk (f(m+ 1) > f(m))→ f(k + 2) > f(k)

)

Witness can be produced, e.g.

φk := {k, k + 1}
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Interpret
∀n(f(n+ 1) > f(n))→ ∀k(f(k + 2) > f(k))

as
∃φ∀k

(
∀m ≤ φk (f(m+ 1) > f(m))→ f(k + 2) > f(k)

)

Witness can be produced, e.g.

φk := k + 1
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Monotone Dialectica Interpretation

Interpret
∀n(f(n+ 1) > f(n))→ ∀n(f(n+ 2) > f(n))

as
∃φ∃ψ≤∗φ ∀k

(
f(ψk + 1) > f(ψk)→ f(k + 2) > f(k)

)

Witness can be produced, e.g.

φk := k + 1
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Advantages of “Bounds”

Uniformity

Bounds don’t depend on bounded input

E.g. compact spaces

Ineffective principles become interpretable

Witnesses may not be computable but can be bounded

E.g. WKL

Not much is lost

Bounds often give precise witness

E.g. monotonicity, searchable set
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Approximation Theory

Existence and uniqueness of best approximations

E.g. approximate continuous functions by polynomials

Existence: quite often ineffective, non-computational

Uniqueness: of form that proof mining applies

∀nN, fC[0,1], pPn
1 , pPn

2 (‖f − pi‖ = best→ ‖p1 − p2‖ = 0)

∀n, f, p1, p2, l∃k(‖f − pi‖ − best ≤ 2−k → ‖p1 − p2‖ < 2−l)
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Approximation Theory

L1 Approximation

Theorem (Jackson’1921)

For any fixed n ∈ N and continuous function f ∈ C[0, 1] there exists a
unique polynomial pn ∈ Pn such that ‖f − pn‖1 is minimal.

Proof (Cheney’1965).

Mathematically elementary proof (just 2 pages), but logically intricate.
Use of classical logic and WKL.

How to compute pn given f and n?

Partial results during the 1970’s
[Björnest̊al’1975 and Kroó’1978]

Explicit algorithm extracted from Cheney’s 1965 proof
[Kohlenbach/O. 2001]
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Approximation Theory

Main Obstacle

Attainment of the infimum (WKL) used in proof of following lemma

Lemma (Original)

∀x∈A (f(x) 6= 0)→ . . .

WKL used to obtain distance from zero

∀x∈A (f(x) 6= 0)→ ∃δ∀x∈A (|f(x)| ≥ δ)

We showed that the weaker version of the lemma is sufficient

Lemma (Weakening)

∃δ∀x∈A (|f(x)| ≥ δ)→ . . .
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Approximation Theory

History (L1 Approximation)

1921 Jackson proof of existence and uniqueness

1965 Cheney elementary proof of uniqueness

1975 Björnest̊al ineff. existence of modulus on f, n

1978 Kroó ineff. existence of modulus on ωf , n

2001 Kohlenbach/O. explicity modulus of uniqueness

2002 Oliva complexity of L1 approximation
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Banach Theorem (1922)

(X, d) complete metric space

f : X → X is contractive if d(f(x), f(y)) ≤ δ · d(x, y) (δ < 1)

Theorem (Banach’1922)

If f : X → X is contractive then f has a unique fixed-point.

For any x0 ∈ X, xn+1 := f(xn) converges to the fixed-point
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Browder/Göhde/Kirk Theorem (1965)

(X, ‖ · ‖) uniformly convex Banach space

C ⊆ X convex, closed and bounded

f : C → C is nonexpansive if ‖f(x)− f(y)‖ ≤ ‖x− y‖

Theorem (Browder, Göhde, Kirk’1965)

If f : C → C is nonexpansive then f has a fixed-point.

If f(C) compact xn+1 := xn+f(xn)
2 converges to a fixed-point

Rate of convergence in general not computable (Kohlenbach)

Can compute rate of asymptotic regularity of xn

i.e. how fast ‖xn − f(xn)‖ → 0
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Fixed Point Theory

Ishikawa Theorem (1976)

(X, ‖ · ‖) normed linear space

C ⊆ X convex and bounded

Theorem (Ishikawa’1976)

If f : C → C is nonexpansive then lim
n→∞

‖xn − f(xn)‖ = 0, where

- (λn)n∈N ∈ [0, 1] is divergent in sum and lim supλn < 1
- xn+1 = (1− λn)xn + λnf(xn)

Theorem (Borwein/Reich/Shafrir’1992)

Dropping the boundedness assumption on C we still have
lim

n→∞
‖xn − f(xn)‖ = rC(f).
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Fixed Point Theory

History (asymptotic regularity)

1976 Ishikawa no uniformity

1978 Edels./O’Brien ineff. uniformity in x0 (fixed λ)

1983 Goebel/Kirk ineff. uniformity in x0 and f (∗)

1990 Goebel/Kirk conjecture no uniformity in C

1992 Bor./Rei./Sha. generalisation of Ishikawa (∗)

1996 Baillon/Bruck full uniformity for fixed λ

2001 Kohlenbach full uniformity

2000 Kirk uniformity on x0, f (f direc. nonexp., fixed λ)

2003 Kohlen./Leust. full uniformity, hyper. spc. and f direc. nonexp.
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Ergodic

Systems or processes with the property that, given sufficient time,
they include or affect all points in a given space

Such systems or processes can be represented statistically
by a reasonably large selection of points
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Ergodic Theory

Let

(X,Σ, µ) probability space

T : X → X measure preserving transformation

T is ergodic if

µ(A) 6= 0 ∧ µ(X\A) 6= 0 =⇒ µ(A∆T−1(A)) 6= 0

Study of ergodic transformations
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Mean Ergodic Theorem (functional analysis)

H Hilbert space

T : H → H nonexpansive linear operator (i.e. ‖Tf‖ ≤ ‖f‖)
Snf := f + Tf + . . .+ Tn−1f

Anf := Snf
n

Theorem (von Newmann)

The sequence Anf converges.

What about rate of convergence?
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Rate of Convergence

Convergence:

∀εQ∗
+∃nN∀m≥n(‖Amf −Anf‖ < ε)

Rate of convergence r(ε) is such that

∀εQ∗
+∀m≥r(ε)(‖Amf −Ar(ε)f‖ < ε)

Not computable in general!



Recent Developments in Proof Mining

Recent Case Studies

Ergodic Theory

Rate of Convergence

Convergence:

∀εQ∗
+∃nN∀m≥n(‖Amf −Anf‖ < ε)

Rate of convergence r(ε) is such that

∀εQ∗
+∀m≥r(ε)(‖Amf −Ar(ε)f‖ < ε)

Not computable in general!



Recent Developments in Proof Mining

Recent Case Studies

Ergodic Theory

Rate of Convergence

Convergence:

∀εQ∗
+∃nN∀m≥n(‖Amf −Anf‖ < ε)

Rate of convergence r(ε) is such that

∀εQ∗
+∀m≥r(ε)(‖Amf −Ar(ε)f‖ < ε)

Not computable in general!



Recent Developments in Proof Mining

Recent Case Studies

Ergodic Theory

Rate of Convergence (n.c.i)

Look at the no-counterexample interpretation of

∀εQ∗
+∃nN∀m≥n(‖Amf −Anf‖ < ε)

i.e.
∀εQ∗

+ ,M∃nN(M(n) ≥ n→ ‖Amf −Anf‖ < ε))

or, equivalently

∀εQ∗
+ ,K∃nN∀m∈ [n,K(n)] (‖Amf −Anf‖ < ε))

Classically equivalent! Computationally better!
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Avigad/Gerhardy

∀εQ∗
+ ,K∃nN∀m∈ [n,K(n)] (‖Amf −Anf‖ < ε))

Extraction of bound n given ε and K

Uses elimination of monotone Skolem functions (due to Kohlenbach)
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Summary

Approximation theory

modulus of uniqueness
classical logic, weak König’s Lemma

Fixed point theory

modulus of asymptotic regularity
convergence of bounded monotone sequences

Ergodic theory

modulus of convergence (n.c.i.)
convergence of bounded monotone sequences
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