Recent Developments in Proof Mining

Paulo Oliva

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

Birmingham, 24 August 2007

Outline

Introduction

- Proof Mining
- Functional Interpretations

2 Recent Case Studies

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

Outline

Introduction

- Proof Mining
- Functional Interpretations

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

Proof Mining

Proof Mining

Extraction of computational content from (ineffective) mathematical proofs

Proof Mining

Proof Mining

Extraction of computational content from (ineffective) mathematical proofs

Proofs often carry more information than what is stated as theorem

Outline

Introduction

- Proof Mining
- Functional Interpretations

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

Functional Interpretations

Functional interpretations:

- Dialectica (Gödel'1958)
- Diller-Nahm variant (Diller/Nahm'1974)
- Monotone Dialectica (Kohlenbach'1990)

• Bounded Dialectica (Ferreira/O.'2005)

Functional Interpretations

Simple Example

Theorem

$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$

Functional Interpretations

Simple Example

Theorem

 $\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$

Proof.

Assume $\forall n(f(n+1) > f(n))$. From that we get both f(k+1) > f(k)and f(k+2) > f(k+1). By transitivity we get f(k+2) > f(k).

Functional Interpretations

Simple Example

Theorem

 $\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$

Proof.

Assume $\forall n(f(n+1) > f(n))$. From that we get both f(k+1) > f(k)and f(k+2) > f(k+1). By transitivity we get f(k+2) > f(k).

Can we compute n given k?

Functional Interpretations

Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(f(\phi k + 1) > f(\phi k) \to f(k + 2) > f(k) \big)$$

Functional Interpretations

Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(f(\phi k + 1) > f(\phi k) \rightarrow f(k + 2) > f(k) \big)$$

Witness can be produced, e.g.

$$\phi k := \left\{ \begin{array}{ll} k & \quad \mbox{if } f(k+1) \leq f(k) \\ k+1 & \quad \mbox{otherwise} \end{array} \right.$$

Functional Interpretations

Diller-Nahm Variant

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(\forall m \in \phi k \ (f(m+1) > f(m)) \to f(k+2) > f(k) \big)$$

Functional Interpretations

Diller-Nahm Variant

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(\forall m \in \phi k \ (f(m+1) > f(m)) \to f(k+2) > f(k) \big)$$

Witness can be produced, e.g.

$$\phi k := \{k, k+1\}$$

Functional Interpretations

Bounded Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(\forall m \le \phi k \ (f(m+1) > f(m)) \to f(k+2) > f(k) \big)$$

Functional Interpretations

Bounded Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall k(f(k+2) > f(k))$$

as

$$\exists \phi \forall k \big(\forall m \leq \phi k \ (f(m+1) > f(m)) \rightarrow f(k+2) > f(k) \big)$$

Witness can be produced, e.g.

$$\phi k := k + 1$$

Functional Interpretations

Monotone Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall n(f(n+2) > f(n))$$

as

$$\exists \phi \exists \psi \leq^* \phi \, \forall k \big(f(\psi k + 1) > f(\psi k) \to f(k + 2) > f(k) \big)$$

Functional Interpretations

Monotone Dialectica Interpretation

Interpret

$$\forall n(f(n+1) > f(n)) \rightarrow \forall n(f(n+2) > f(n))$$

as

$$\exists \phi \exists \psi \leq^* \phi \, \forall k \big(f(\psi k+1) > f(\psi k) \to f(k+2) > f(k) \big)$$

Witness can be produced, e.g.

$$\phi k := k + 1$$

Functional Interpretations

Advantages of "Bounds"

し つりで 言 く言 > く言 > く 問 > く ロ >

Functional Interpretations

Advantages of "Bounds"

• Uniformity

Bounds don't depend on bounded input

E.g. compact spaces

Functional Interpretations

Advantages of "Bounds"

Uniformity

Bounds don't depend on bounded input

E.g. compact spaces

• Ineffective principles become interpretable

Witnesses may not be computable but can be bounded E.g. WKL

Functional Interpretations

Advantages of "Bounds"

Uniformity

Bounds don't depend on bounded input

E.g. compact spaces

• Ineffective principles become interpretable

Witnesses may not be computable but can be bounded E.g. WKL

Not much is lost

Bounds often give precise witness

E.g. monotonicity, searchable set

- Approximation Theory

Outline

Introductio

- Proof Mining
- Functional Interpretations

2 Recent Case Studies

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

- Approximation Theory

Approximation Theory

- Existence and uniqueness of best approximations
 - E.g. approximate continuous functions by polynomials

- Approximation Theory

Approximation Theory

- Existence and uniqueness of best approximations E.g. approximate continuous functions by polynomials
- Existence: quite often ineffective, non-computational

- Approximation Theory

Approximation Theory

- Existence and uniqueness of best approximations
 E.g. approximate continuous functions by polynomials
- Existence: quite often ineffective, non-computational
- Uniqueness: of form that proof mining applies

$$\forall n^{\mathbb{N}}, f^{C[0,1]}, p_1^{P_n}, p_2^{P_n}(\|f - p_i\| = \mathsf{best} \to \|p_1 - p_2\| = 0)$$

・ロット (雪) (日) (日)

э

- Approximation Theory

Approximation Theory

- Existence and uniqueness of best approximations
 E.g. approximate continuous functions by polynomials
- Existence: quite often ineffective, non-computational
- Uniqueness: of form that proof mining applies

$$\forall n^{\mathbb{N}}, f^{C[0,1]}, p_1^{P_n}, p_2^{P_n}(\|f - p_i\| = \mathsf{best} \to \|p_1 - p_2\| = 0)$$

$$\forall n, f, p_1, p_2, l \exists k (\|f - p_i\| - \mathsf{best} \le 2^{-k} \to \|p_1 - p_2\| < 2^{-l})$$

・ロット (雪) (日) (日)

э

- Approximation Theory

L_1 Approximation

Theorem (Jackson'1921)

For any fixed $n \in \mathbb{N}$ and continuous function $f \in C[0, 1]$ there exists a unique polynomial $p_n \in P_n$ such that $||f - p_n||_1$ is minimal.

- Approximation Theory

L₁ Approximation

Theorem (Jackson'1921)

For any fixed $n \in \mathbb{N}$ and continuous function $f \in C[0,1]$ there exists a unique polynomial $p_n \in P_n$ such that $||f - p_n||_1$ is minimal.

Proof (Cheney'1965).

Mathematically elementary proof (just 2 pages), but logically intricate. Use of classical logic and WKL.

- Approximation Theory

L_1 Approximation

Theorem (Jackson'1921)

For any fixed $n \in \mathbb{N}$ and continuous function $f \in C[0, 1]$ there exists a unique polynomial $p_n \in P_n$ such that $||f - p_n||_1$ is minimal.

Proof (Cheney'1965).

Mathematically elementary proof (just 2 pages), but logically intricate. Use of classical logic and WKL.

How to compute p_n given f and n?

- Partial results during the 1970's [Björnestål'1975 and Kroó'1978]
- Explicit algorithm extracted from Cheney's 1965 proof [Kohlenbach/O. 2001]

- Approximation Theory

Main Obstacle

Attainment of the infimum (WKL) used in proof of following lemma

Lemma (Original)

 $\forall x \in A (f(x) \neq 0) \rightarrow \dots$

- Approximation Theory

Main Obstacle

Attainment of the infimum (WKL) used in proof of following lemma

Lemma (Original)

 $\forall x \in A (f(x) \neq 0) \rightarrow \dots$

WKL used to obtain distance from zero

$$\forall x \in A \ (f(x) \neq 0) \to \exists \delta \forall x \in A \ (|f(x)| \ge \delta)$$

- Approximation Theory

Main Obstacle

Attainment of the infimum (WKL) used in proof of following lemma

Lemma (Original)

 $\forall x \in A (f(x) \neq 0) \to \dots$

WKL used to obtain distance from zero

$$\forall x \in A \left(f(x) \neq 0 \right) \to \exists \delta \forall x \in A \left(|f(x)| \geq \delta \right)$$

We showed that the weaker version of the lemma is sufficient

Lemma (Weakening)

 $\exists \delta \forall x \in A (|f(x)| \ge \delta) \to \dots$

Approximation Theory

History (L₁ Approximation)

1921	Jackson	proof of existence and uniqueness
1965	Cheney	elementary proof of uniqueness
1975	Björnestål	ineff. existence of modulus on f, \boldsymbol{n}
1978	Kroó	ineff. existence of modulus on ω_f, n
2001	${\sf Kohlenbach}/{\sf O}.$	explicity modulus of uniqueness
2002	Oliva	complexity of L_1 approximation

- Fixed Point Theory

Outline

Introductio

- Proof Mining
- Functional Interpretations

2 Recent Case Studies

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

Recent Developments in Proof Mining

Recent Case Studies

Fixed Point Theory

Banach Theorem (1922)

- (X, d) complete metric space
- $f: X \to X$ is contractive if $d(f(x), f(y)) \le \delta \cdot d(x, y)$ $(\delta < 1)$

Fixed Point Theory

Banach Theorem (1922)

- (X,d) complete metric space
- $f: X \to X$ is contractive if $d(f(x), f(y)) \le \delta \cdot d(x, y)$ ($\delta < 1$)

Theorem (Banach'1922)

If $f: X \to X$ is contractive then f has a unique fixed-point.

- Fixed Point Theory

Banach Theorem (1922)

- (X, d) complete metric space
- $f: X \to X$ is contractive if $d(f(x), f(y)) \le \delta \cdot d(x, y)$ ($\delta < 1$)

Theorem (Banach'1922)

If $f: X \to X$ is contractive then f has a unique fixed-point.

For any $x_0 \in X$, $x_{n+1} := f(x_n)$ converges to the fixed-point

- Fixed Point Theory

Browder/Göhde/Kirk Theorem (1965)

- $(X, \|\cdot\|)$ uniformly convex Banach space
- $\bullet \ C \subseteq X$ convex, closed and bounded
- $f: C \to C$ is nonexpansive if $||f(x) f(y)|| \le ||x y||$

- Fixed Point Theory

Browder/Göhde/Kirk Theorem (1965)

- $(X,\|\cdot\|)$ uniformly convex Banach space
- $\bullet \ C \subseteq X$ convex, closed and bounded
- $f: C \to C$ is nonexpansive if $||f(x) f(y)|| \le ||x y||$

Theorem (Browder, Göhde, Kirk'1965)

If $f: C \to C$ is nonexpansive then f has a fixed-point.

- Fixed Point Theory

Browder/Göhde/Kirk Theorem (1965)

- $(X,\|\cdot\|)$ uniformly convex Banach space
- $\bullet \ C \subseteq X$ convex, closed and bounded
- $f: C \to C$ is nonexpansive if $||f(x) f(y)|| \le ||x y||$

Theorem (Browder, Göhde, Kirk'1965)

If $f: C \to C$ is nonexpansive then f has a fixed-point.

- If f(C) compact $x_{n+1} := \frac{x_n + f(x_n)}{2}$ converges to a fixed-point
- Rate of convergence in general not computable (Kohlenbach)

- Can compute rate of asymptotic regularity of x_n
 - i.e. how fast $||x_n f(x_n)|| \to 0$

Fixed Point Theory

Ishikawa Theorem (1976)

- $(X, \|\cdot\|)$ normed linear space
- $C \subseteq X$ convex and bounded

Theorem (Ishikawa'1976)

If $f: C \to C$ is nonexpansive then $\lim_{n \to \infty} ||x_n - f(x_n)|| = 0$, where

- $(\lambda_n)_{n\in\mathbb{N}}\in[0,1]$ is divergent in sum and $\limsup\lambda_n<1$
- $x_{n+1} = (1 \lambda_n)x_n + \lambda_n f(x_n)$

Fixed Point Theory

Ishikawa Theorem (1976)

- $(X, \|\cdot\|)$ normed linear space
- $C \subseteq X$ convex and bounded

Theorem (Ishikawa'1976)

If $f: C \to C$ is nonexpansive then $\lim_{n \to \infty} ||x_n - f(x_n)|| = 0$, where

- $(\lambda_n)_{n\in\mathbb{N}}\in[0,1]$ is divergent in sum and $\limsup\lambda_n<1$

-
$$x_{n+1} = (1 - \lambda_n)x_n + \lambda_n f(x_n)$$

Theorem (Borwein/Reich/Shafrir'1992)

Dropping the boundedness assumption on C we still have $\lim_{n\to\infty} ||x_n - f(x_n)|| = r_C(f).$

- Fixed Point Theory

History (asymptotic regularity)

1976	Ishikawa	no uniformity
1978	Edels./O'Brien	ineff. uniformity in x_0 (fixed λ)
1983	${\sf Goebel}/{\sf Kirk}$	ineff. uniformity in x_0 and f (*)
1990	Goebel/Kirk	conjecture no uniformity in ${\boldsymbol C}$
1992	Bor./Rei./Sha.	generalisation of Ishikawa (*)
1996	${\sf Baillon}/{\sf Bruck}$	full uniformity for fixed λ
2001	Kohlenbach	full uniformity
2000	Kirk	uniformity on x_0, f (f direc. nonexp., fixed λ)
2003	${\sf Kohlen.}/{\sf Leust.}$	full uniformity, hyper. spc. and f direc. nonexp.

ヘロト ヘロト ヘビト ヘビト

æ

Ergodic Theory

Outline

- Proof Mining
- Functional Interpretations

2 Recent Case Studies

- Approximation Theory
- Fixed Point Theory
- Ergodic Theory

Ergodic Theory

Systems or processes with the property that, given sufficient time, they include or affect all points in a given space

Ergodic Theory

Ergodic

Systems or processes with the property that, given sufficient time, they include or affect all points in a given space

Such systems or processes can be represented statistically by a reasonably large selection of points

Ergodic Theory

Ergodic Theory

Let

 (X,Σ,μ) probability space

 $T: X \rightarrow X$ measure preserving transformation

Ergodic Theory

Ergodic Theory

Let

 (X,Σ,μ) probability space

 $T: X \rightarrow X$ measure preserving transformation

• T is ergodic if

 $\mu(A) \neq 0 \ \land \ \mu(X \backslash A) \neq 0 \quad \Longrightarrow \quad \mu(A \, \Delta \, T^{-1}(A)) \neq 0$

Ergodic Theory

Ergodic Theory

Let

 (X,Σ,μ) probability space

 $T: X \rightarrow X$ measure preserving transformation

• T is ergodic if

 $\mu(A) \neq 0 \ \land \ \mu(X \backslash A) \neq 0 \quad \Longrightarrow \quad \mu(A \, \Delta \, T^{-1}(A)) \neq 0$

- 日本 - 1 日本 - 日本 - 日本 - 日本

• Study of ergodic transformations

Ergodic Theory

Mean Ergodic Theorem (functional analysis)

- \mathcal{H} Hilbert space
- $T: \mathcal{H} \to \mathcal{H}$ nonexpansive linear operator (i.e. $||Tf|| \le ||f||$)

- $S_n f := f + Tf + \ldots + T^{n-1}f$
- $A_n f := \frac{S_n f}{n}$

-Ergodic Theory

Mean Ergodic Theorem (functional analysis)

- \mathcal{H} Hilbert space
- $T: \mathcal{H} \to \mathcal{H}$ nonexpansive linear operator (i.e. $||Tf|| \le ||f||$)

•
$$S_n f := f + Tf + \ldots + T^{n-1}f$$

•
$$A_n f := \frac{S_n f}{n}$$

Theorem (von Newmann)

The sequence $A_n f$ converges.

-Ergodic Theory

Mean Ergodic Theorem (functional analysis)

- \mathcal{H} Hilbert space
- $T: \mathcal{H} \to \mathcal{H}$ nonexpansive linear operator (i.e. $||Tf|| \le ||f||$)

•
$$S_n f := f + Tf + \ldots + T^{n-1}f$$

•
$$A_n f := \frac{S_n f}{n}$$

Theorem (von Newmann)

The sequence $A_n f$ converges.

What about rate of convergence?

Ergodic Theory

Rate of Convergence

Convergence:

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \exists n^{\mathbb{N}} \forall m \ge n (\|A_{m}f - A_{n}f\| < \varepsilon)$$

Ergodic Theory

Rate of Convergence

Convergence:

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \exists n^{\mathbb{N}} \forall m \ge n (\|A_{m}f - A_{n}f\| < \varepsilon)$$

Rate of convergence $r(\varepsilon)$ is such that

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \forall m \ge r(\varepsilon) (\|A_{m}f - A_{r(\varepsilon)}f\| < \varepsilon)$$

Ergodic Theory

Rate of Convergence

Convergence:

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \exists n^{\mathbb{N}} \forall m \ge n (\|A_{m}f - A_{n}f\| < \varepsilon)$$

Rate of convergence $r(\varepsilon)$ is such that

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \forall m \ge r(\varepsilon) (\|A_{m}f - A_{r(\varepsilon)}f\| < \varepsilon)$$

Not computable in general!

Ergodic Theory

Rate of Convergence (n.c.i)

Look at the no-counterexample interpretation of

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \exists n^{\mathbb{N}} \forall m \ge n (\|A_{m}f - A_{n}f\| < \varepsilon)$$

i.e.

$$\forall \varepsilon^{\mathbb{Q}^*_+}, M \exists n^{\mathbb{N}}(M(n) \ge n \to ||A_m f - A_n f|| < \varepsilon))$$

or, equivalently

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}}, K \exists n^{\mathbb{N}} \forall m \in [n, K(n)] \left(\|A_{m}f - A_{n}f\| < \varepsilon \right) \right)$$

Ergodic Theory

Rate of Convergence (n.c.i)

Look at the no-counterexample interpretation of

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}} \exists n^{\mathbb{N}} \forall m \ge n (\|A_{m}f - A_{n}f\| < \varepsilon)$$

i.e.

$$\forall \varepsilon^{\mathbb{Q}^*_+}, M \exists n^{\mathbb{N}}(M(n) \ge n \to ||A_m f - A_n f|| < \varepsilon))$$

or, equivalently

$$\forall \varepsilon^{\mathbb{Q}^*_+}, K \exists n^{\mathbb{N}} \forall m \in [n, K(n)] \left(\|A_m f - A_n f\| < \varepsilon \right) \right)$$

Classically equivalent! Computationally better!

Ergodic Theory

${\sf Avigad}/{\sf Gerhardy}$

$$\forall \varepsilon^{\mathbb{Q}_{+}^{*}}, K \exists n^{\mathbb{N}} \forall m \in [n, K(n)] (\|A_{m}f - A_{n}f\| < \varepsilon))$$

Extraction of bound n given ε and K

Uses elimination of monotone Skolem functions (due to Kohlenbach)

Ergodic Theory

Summary

- Approximation theory
 - modulus of uniqueness
 - classical logic, weak König's Lemma
- Fixed point theory
 - modulus of asymptotic regularity
 - convergence of bounded monotone sequences
- Ergodic theory
 - modulus of convergence (n.c.i.)
 - convergence of bounded monotone sequences

・ロット (雪) (日) (日)

э