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Hoare Logic

Hoare triples: {P} f {Q}

o Partial correctness

If input satisfies P then output (if terminates) satisfies Q

o Partial correctness (pointer programs)

If input satisfies P then program does not abort and output (if
terminates) satisfies @

o Backward reasoning
For output to satisfy @ it is sufficient that input satisfies P
o Total correctness

If input satisfies P then f terminates and output satisfies )
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Hoare logic

Motivation

@ Develop Hoare logic for continuous systems
@ ... or show that such thing does not exist

@ Proceeded by trying to understand “structure” of Hoare logics
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Hoare logic

Related Work

Dijkstra’s predicate transformer

o Kozen's KAT (Kleene Algebras with Test)

Abramsky's specification categories

@ Bloom and Esik’s iteration theory
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Abstract Hoare Logic
Monoidal Categories

o Sequential composition: categorical composition
f:X—>Y, g:Y—>Zthengof: X —>Z

gof — f

Y
ks

o Parallel composition: Monoidal operation
[:X=Y, g:Z—Wthen fRg:(X®Z)—=(YW)

f®g
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o Iteration: Trace operation
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Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y
e I
z z

o Examples
o Disjoint union
Tr(f) = {(z,y) : Fz0,. .., 2n({@,20) € fA .. A (2n, ) € f)}

o Cartesian products

Tr(f) = {(z,y) - 32({{x, 2), (y, 2)) € 1)}
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that

C|(Sb) — Sm.
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that
C|(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (X — X W X) Sum (¥ x ¥ — X)

Joining of Wires (X W3 — %) | Splitting of Wires (¥ — X x X)
Assignment (X — X) Scalar Multiplication (X — X)
Register (X — X)
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© Abstract Hoare logic
@ Verification functor
@ Abstract logical rules
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Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers

o Others:
Strongest post condition, loop invariant, ...
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Pre/Post-conditions | Elements of pre-orders
Logical implication Partial order
Rule of consequence | Monotonicity

Loop invariants Fixed points
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Pre Order

Hoare Logic Abstract Hoare Logic

Pre/Post-conditions | Elements of pre-orders
Logical implication Partial order
Rule of consequence | Monotonicity

Loop invariants Fixed points

Hoare logic derived from embedding of a TMC into category of pre-orders
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Verification Functor

Definition (Verification functor)

A strict monoidal functor H : S — Pro is called a verification functor for
S if it satisfies:

(1) trace soundness

QA H(f)P,Q)C(R,Q) = H(T(f)(P)CR
(2) trace completeness

HT(H)P)ER = IQTD(H(f)(P,Q)C (R,Q)

forall f: X®Z —->Y®ZinS, and Pec H(X), Re HY).
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Pro
S
X
Vo
Y
PE H(X)
OEH®T)
{P} 10} H{f(P) C 0
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Verification functor

Abstract Hoare Triples

Let
e H :S — Pro be a verification functor
e f:X — Y is a morphism (system) in S
e PcH(X)and Qe H(Y)

Definition (Abstract Hoare triples)

We define abstract Hoare triples as

{P} f{Q} = H(f)(P)Enw) @
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Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

fes
{P} FLH(N(P)}

(axiom)

P Cx P {P} f{Q} QEYQI(C

(P} Q] R
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Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

fes (axiom) {P} F{Q} {Q}g{R} 0
{P} f{H()(P)} {P}gof{R}
(P} F{Q} {R}g{S} o {(P,Q)} f{(R,Q)} (Trs)
{(P.R)} fog{{(Q,5)} {P} Trs(f) {R}

PEx P {P}f{Q} QCyQ
{P'} F{Q"}

(csq)
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@ While programs: partial correctness
@ Pointer programs: partial correctness
@ While programs: complexity and termination
@ Stream circuits
@ Continuous systems
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L Instantiations

While programs: partial correctness

While Programs

@ Var: set of program variables

Store X : Var - Z

@ Atomic programs
Assignment (z :=1): X — X
Joining A : ¥ W¥ — %

- Boolean test ify : ¥ — XWX
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L Instantiations

While programs: partial correctness

While Programs (partial correctness, forward reasoning)

@ Pre order (P(X),<C)

o H(f)(P):={yeY : JxeP (f(z) =y)}
H(f)(P) :=SPC(f,P)

o {P} f{Q} means H(f)(P) CQ, i.e.
“if P holds before execution then (if program terminates)
Q@ holds afterwards’

o For the basic systems we have:
{P} z:=1t {Fxo(Plzo/x] Nz =t[xo/x])}

P}y A {pPve}
(PY ify,  {(PADP A=)



Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Programs (partial correctness, backward reasoning)

@ Pre order (P(X),D)

o H(f)(P)={re X : f(z)€Q}
H(f)(P) :=WPC(f,P)

o {P} f{Q} means H(f)(P) 2 Q, i.e.
“in order for P to hold after (terminating) execution
it is sufficient that Q holds before’

o For the basic systems we have:
{P} 2=t {Plt/a])
{ry A {(PP)}
(P} ify {(PAD)V(QA-D)}
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Pointer programs: partial correctness

Pointer Programs

o Store ¥ : Var - Z

@ Heap II : partial functions N — Z with finite domain
o State: (X x IT) U {abort}

@ Atomic programs

Look up (z := [t])

- Mutation ([t] := s)
Allocation (z := new(t))

Deallocation disp(t)



= Pointer programs: partial correctness

Separation Logic

@ Pre order (P(X x II), D)
e H(f)(P):=WPC(f,P)

o {P} f{Q} means H(f)(P)2Q, ie.

“if Q holds before execution then f does not abort and
if terminates output satisfies P"

@ For the basic systems we have:
{Py  a=[] {3t —= ) * ((t =) = Pl'/z]))}
(P} =5 {(tm )% ((trs) =P))
{P} x:=new(t) {Vi((i—t)—Pli/z])}
{P} disp(t) {(t— —)* P}
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L Instantiations

While programs: complexity and termination

Hoare Logic for Complexity (backward reasoning)

Pre order (¥ — N, <)
o H(f)(P)(p) := P(f(p)) + (time to execute f on p)

{P} £ {Q} means Vp(H(f)(P)(p) < Q(p))

“starting with Q credits we can run f and still have P left"

For the basic systems we have:
{P} z:=t {P[t]+1}
(P} A {(P+1P+1)}
(P} ify  {max{P,Q}+1}
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Stream circuits

Stream Circuits

Smooth functions can be represented as streams R

oy = [y(0),5'(0),5(0), .

Stream circuits basic operations:

—> aX —» v
—» R —» :
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Hoare Logic for Stream Circuits

o Pre order (R¥, =)
o H(f)(P):=f(P)
o {P} f{Q} means f(P,Q)

“input P is related to output Q)"

@ For the basic systems we have:
{P} ax {aP}
P} (+) {P+Q}
{ry v (R P)}
{P} R {0xP}
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J€S (axiom) (P} F{Q} {Q}g{R} (©)
{Py (P} {P}gof{R}
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€S (axiom) (P} F{Q} {Q}g{R} (©)
{Py (P} {P}gof{R}

(P} F{Q} {R}g{S} o {(P,Q)} [ {(RQ)}
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Hoare logic translates networks into (differential) equations!
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Continuous systems

Example
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Continuous systems

Summary

@ Abstraction of Hoare logic

o Flowcharts programs
o Pointer programs
o ...

e Future work:

o Total correctness
o Higher order programs
o Concurrency

o Continuous systems
o Finding loop invariants = solving differential equations

o Future work:
o Use modularity to partially solve diff equations
o Reason with black boxes
o Non linear systems
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