Abstract Hoare Logic

Abstract Hoare Logic

Paulo Oliva
(joint work with U. Martin and E. A. Mathiesen)

Queen Mary, University of London, UK
(pbo@dcs.qmul.ac.uk)

TMC, Network Algebras, and Applications
Wroctaw, 15 July 2007

Abstract Hoare Logic

Aim

Hoare logic for continuous systems

Abstract Hoare Logic

Outline

© Introduction
@ Hoare logic
@ TMC and system categories

© Abstract Hoare logic
@ Verification functor
@ Abstract logical rules

© Instantiations
@ While programs: partial correctness
@ Pointer programs: partial correctness
@ While programs: complexity and termination
@ Stream circuits
@ Continuous systems

Abstract Hoare Logic
L Introduction

Outline

© Introduction
@ Hoare logic
@ TMC and system categories

Abstract Hoare Logic
L Introduction

Hoare Logic

Hoare triples: {P} f {Q}

o Partial correctness

If input satisfies P then output (if terminates) satisfies Q

o Partial correctness (pointer programs)

If input satisfies P then program does not abort and output (if
terminates) satisfies @

o Backward reasoning
For output to satisfy @ it is sufficient that input satisfies P
o Total correctness

If input satisfies P then f terminates and output satisfies)

Abstract Hoare Logic
L Introduction

Hoare logic

Hoare Logic

o Higher order programs
o Parallel programs

Abstract Hoare Logic
L Introduction

Hoare logic

Hoare Logic

Higher order programs

Parallel programs

Continuous systems

Abstract Hoare Logic
L Introduction

Hoare logic

Motivation

@ Develop Hoare logic for continuous systems

Abstract Hoare Logic
L Introduction

Hoare logic

Motivation

@ Develop Hoare logic for continuous systems

@ ... or show that such thing does not exist

Abstract Hoare Logic
L Introduction

Hoare logic

Motivation

@ Develop Hoare logic for continuous systems
@ ... or show that such thing does not exist

@ Proceeded by trying to understand “structure” of Hoare logics

Abstract Hoare Logic

L Introduction

Hoare logic

Related Work

Dijkstra’s predicate transformer

o Kozen's KAT (Kleene Algebras with Test)

Abramsky's specification categories

@ Bloom and Esik’s iteration theory

Abstract Hoare Logic

L Introduction

TMC and system categories

Network vs Flowcharts

Abstract Hoare Logic
L Introduction

TMC and system categories

Network vs Flowcharts

+ > , —
—
—>

»(b 3
—(= |
C

i

Abstract Hoare Logic
L Introduction

TMC and system categories

Network vs Flowcharts

C= — (C= x C)

|
p\

H— (HYH)

Abstract Hoare Logic
L*Im:mducticn
TMC and system categories

Network vs Flowcharts

C>® — (C® x C)
o > , —
p—- L 5
F [«
(HwH)— H
“ j — _
—k
c

(HW H)

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

—
— D

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

<

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

4’@# B Sl

Abstract Hoare Logic
L Introduction

TMC and system categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

S <+

S +——

Abstract Hoare Logic
Monoidal Categories

o Sequential composition: categorical composition
f:X—>Y, g:Y—>Zthengof: X —>Z

gof — f

Y
ks

o Parallel composition: Monoidal operation
[:X=Y, g:Z—Wthen fRg:(X®Z)—=(YW)

f®g

Abstract Hoare Logic

L Introduction
TMC and system categories

Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y

Z Z

Abstract Hoare Logic
L*Im:mducticn
TMC and system categories

Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y
e I
z z

o Examples
o Disjoint union
Tr(f) = {(z,y) : Fz0,. .., 2n({@,20) € fA .. A (2n,) € f)}

o Cartesian products

Tr(f) = {(z,y) - 32({{x, 2), (y, 2)) € 1)}

Abstract Hoare Logic
L*Im:mduction
TMC and system categories

System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that

C|(Sb) — Sm.

Abstract Hoare Logic
System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that
C|(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (X — X W X) Sum (¥ x ¥ — X)

Joining of Wires (X W3 — %) | Splitting of Wires (¥ — X x X)
Assignment (X — X) Scalar Multiplication (X — X)
Register (X — X)

Abstract Hoare Logic
L*Abstract Hoare logic

Outline

© Abstract Hoare logic
@ Verification functor
@ Abstract logical rules

Abstract Hoare Logic
L*Abstract Hoare logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

Abstract Hoare Logic
L*Abstract Hoare logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

Abstract Hoare Logic
L*Abstract Hoare logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers

Abstract Hoare Logic
L*Abstract Hoare logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers

o Others:
Strongest post condition, loop invariant, ...

Abstract Hoare Logic
L*Abstract Hoare logic

Pre Order

Hoare Logic Abstract Hoare Logic

Pre/Post-conditions | Elements of pre-orders
Logical implication Partial order
Rule of consequence | Monotonicity

Loop invariants Fixed points

Abstract Hoare Logic
|—Abstract Hoare logic
Pre Order

Hoare Logic Abstract Hoare Logic

Pre/Post-conditions | Elements of pre-orders
Logical implication Partial order
Rule of consequence | Monotonicity

Loop invariants Fixed points

Hoare logic derived from embedding of a TMC into category of pre-orders

Abstract Hoare Logic
L*Abstract Hoare logic

Pre Order

Abstract Hoare Logic

L Abstract Hoare logic

Pre Order

Pro

Abstract Hoare Logic

L Abstract Hoare logic

Pre Order

Pro

Abstract Hoare Logic
|—Abstract Hoare logic

Verification Functor

Definition (Verification functor)

A strict monoidal functor H : S — Pro is called a verification functor for
S if it satisfies:

(1) trace soundness

QA H(f)P,Q)C(R,Q) = H(T(f)(P)CR
(2) trace completeness

HT(H)P)ER = IQTD(H(f)(P,Q)C (R,Q)

forall f: X®Z —->Y®ZinS, and Pec H(X), Re HY).

Abstract Hoare Logic

L Abstract Hoare logic

L Verification functor

Abstract Hoare Triples

Pro

Abstract Hoare Triples

Pro
S
X
Vo
Y
PE H(X)
OEH®T)
{P} 10} H{f(P) C 0

Abstract Hoare Logic
L*Abstract Hoare logic

Verification functor

Abstract Hoare Triples

Let
e H :S — Pro be a verification functor
e f:X — Y is a morphism (system) in S
e PcH(X)and Qe H(Y)

Definition (Abstract Hoare triples)

We define abstract Hoare triples as

{P} f{Q} = H(f)(P)Enw) @

Abstract Hoare Logic
|—Abstract Hoare logic

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

fes
{P} FLH(N(P)}

(axiom)

P Cx P {P} f{Q} QEYQI(C

(P} Q] R

Abstract Hoare Logic

L Abstract Hoare logic

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

FES o PHIQ) @B
(P} F{H(D(P)} (PYgos (R}

PEx P {P}f{Q} QCyQ
{P'} F{Q"}

(csq)

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

FES o PHIQ) @B
(P} F{H(D(P)} (PYgos (R}

{P} F{Q} {R}g{S} o
{{P,R)} f®g{(Q,S)}
PEx P {P}f{Q} QCyQ
{P'} F{Q"}

(csq)

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pro:

fes (axiom) {P} F{Q} {Q}g{R} 0
{P} f{H()(P)} {P}gof{R}
(P} F{Q} {R}g{S} o {(P,Q)} f{(R,Q)} (Trs)
{(P.R)} fog{{(Q,5)} {P} Trs(f) {R}

PEx P {P}f{Q} QCyQ
{P'} F{Q"}

(csq)

Abstract Hoare Logic
L Instantiations

Outline

© Instantiations
@ While programs: partial correctness
@ Pointer programs: partial correctness
@ While programs: complexity and termination
@ Stream circuits
@ Continuous systems

Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Programs

@ Var: set of program variables

Store X : Var - Z

@ Atomic programs
Assignment (z :=1): X — X
Joining A : ¥ W¥ — %

- Boolean test ify : ¥ — XWX

Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Programs (partial correctness, forward reasoning)

@ Pre order (P(X),<C)

o H(f)(P):={yeY : JxeP (f(z) =y)}
H(f)(P) :=SPC(f,P)

o {P} f{Q} means H(f)(P) CQ, i.e.
“if P holds before execution then (if program terminates)
Q@ holds afterwards’

o For the basic systems we have:
{P} z:=1t {Fxo(Plzo/x] Nz =t[xo/x])}

P}y A {pPve}
(PY ify, {(PADP A=)

Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Programs (partial correctness, backward reasoning)

@ Pre order (P(X),D)

o H(f)(P)={re X : f(z)€Q}
H(f)(P) :=WPC(f,P)

o {P} f{Q} means H(f)(P) 2 Q, i.e.
“in order for P to hold after (terminating) execution
it is sufficient that Q holds before’

o For the basic systems we have:
{P} 2=t {Plt/a])
{ry A {(PP)}
(P} ify {(PAD)V(QA-D)}

Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Loop Rule
while, (C) (1wC)oifpo A

J gl

Abstract Hoare Logic

L Instantiations

While programs: partial correctness

While Loop Rule
while, (C) Tr((1WC)oify 0 A)

J gl

While Loop Rule
while, (C) Tr((1WC)oify 0 A)

T aU A“?—'
C | C

:

{IA-b}y1{IA=b} {IAb}C{I}
(I} ify {(TA=b,TAB)} {(IA=D,IAD)} 16 C {(IA-D,I)}
(I (LW C)oify {(IA—=b,1)}

(1,1} 1w C)oifyo A {(IA-b,I)}

(I} whiley(C) {1 A —b}

(U

°)
()
(Tr)

While Loop Rule
while, (C) Tr((1WC)oify 0 A)

T »(b {1} —“4~<Ii—> {1 A b}
C | C

{IA-b}y1{IA=b} {IAb}C{I}
(I} ify {(TA=b,TAB)} {(IA=D,IAD)} 16 C {(IA-D,I)}
(I (LW C)oify {(IA—=b,1)}

(1,1} 1w C)oifyo A {(IA-b,I)}

{1} whiley(C) {1 A —b}

(U

°)
()
(Tr)

While Loop Rule
while, (C) Tr((1WC)oify 0 A)

C | — c

{1} {1}

{IA-b}y1{IA-b} {IAb}C{I}
(I} ify {(TA=b,TABY} {(IA=B,IAD)} 16 C {(IA—D,I)}
(I} (LW C) oify {(I A—b,I)}

(I,D)} (1WC) oifyo A {(IA—b,I)}

{1} whiley(C) {I A —b}

Y

°)
()
(Tr)

While Loop Rule

while, (C) Tr((1WC)oify 0 A)
" - 0 _Aﬂ.qi_. (175}
C — c P
(1) 8

(IA-bY L{IA-b} {IAD}C{I}
(I} ify {(TA—b, TAB)}Y ((TA—bIAD)}L6C {(IAb D)}
(I} (1w C) o ify {(I A b, 1)

(1.1} (16 C)oify0 A {(IA—b 1)} (;r)
(I} whiley(C) {I A —b}

Y

°)

While Loop Rule

while, (C) Tr((1WC)oify 0 A)
" - 0 _Aﬂ.qi_. (175}
C — c P
- A 8

{IA-b}y1{IA=b} {IAb}C{I}
(I} ify {(TA=b,IABY} {(IA—D,IAD)} 16 C {(IA—D,I)}
(I (LW C)oify {(IA=b,I)}

(1,1} Q1w C)oifyo A {(IA-b,I)}

(I} whiley(C) {1 A —b}

(]

°)
()
(Tr)

While Loop Rule

while, (C) Tr((1WC)oify 0 A)
T »(b {1} —“4~<Ii—> {1 A b}
C | — c P
{INb} {I}

{IA=b} 1{IA=b} {IAD}C{I}
(I ify {(TA=b,TABY} {(IA=D,IAD)} 16 C {(IA—D,I)}
(I} (LW C) o ify {(I A-b,I)}

((I,D)} 1WC) oifyo A {(IA—D,I)}

(I} whiley(C) {T A —b}

(]

°)
()
(Tr)

Abstract Hoare Logic

L Instantiations

Pointer programs: partial correctness

Pointer Programs

o Store ¥ : Var - Z

@ Heap II : partial functions N — Z with finite domain
o State: (X x IT) U {abort}

@ Atomic programs

Look up (z := [t])

- Mutation ([t] := s)
Allocation (z := new(t))

Deallocation disp(t)

= Pointer programs: partial correctness

Separation Logic

@ Pre order (P(X x II), D)
e H(f)(P):=WPC(f,P)

o {P} f{Q} means H(f)(P)2Q, ie.

“if Q holds before execution then f does not abort and
if terminates output satisfies P"

@ For the basic systems we have:
{Py a=[] {3t —=) * ((t =) = Pl'/z]))}
(P} =5 {(tm)% ((trs) =P))
{P} x:=new(t) {Vi((i—t)—Pli/z])}
{P} disp(t) {(t— —)* P}

Abstract Hoare Logic

L Instantiations

While programs: complexity and termination

Hoare Logic for Complexity (backward reasoning)

Pre order (¥ — N, <)
o H(f)(P)(p) := P(f(p)) + (time to execute f on p)

{P} £ {Q} means Vp(H(f)(P)(p) < Q(p))

“starting with Q credits we can run f and still have P left"

For the basic systems we have:
{P} z:=t {P[t]+1}
(P} A {(P+1P+1)}
(P} ify {max{P,Q}+1}

Abstract Hoare Logic

L Instantiations

Stream circuits

Stream Circuits

Smooth functions can be represented as streams R

oy = [y(0),5'(0),5(0), .

Stream circuits basic operations:

—> aX —» v
—» R —» :

Abstract Hoare Logic

L Instantiations

Stream ircuits
Stream Circuits
Smooth functions can be represented as streams R¥
oy = [y(0),5/(0),5”(0), ..

Stream circuits basic operations:

—> aX —» v
—» R —» :

Abstract Hoare Logic

L Instantiations

Stream ircuits
Stream Circuits
Smooth functions can be represented as streams R¥
oy = [y(0),5/(0),5”(0), ..

Stream circuits basic operations:

—> aX —» v
—» R —» :

Abstract Hoare Logic

L Instantiations

Stream ircuits
Stream Circuits
Smooth functions can be represented as streams R¥
oy = [y(0),5/(0),5”(0), ..

Stream circuits basic operations:

—> aX —» v
—» R —» :

Hoare Logic for Stream Circuits

o Pre order (R¥, =)
o H(f)(P):=f(P)
o {P} f{Q} means f(P,Q)

“input P is related to output Q)"

@ For the basic systems we have:
{P} ax {aP}
P} (+) {P+Q}
{ry v (R P)}
{P} R {0xP}

Hoare Logic for Continuous Systems

J€S (axiom) (P} F{Q} {Q}g{R} (©)
{Py (P} {P}gof{R}

(P} F{Q} {R}g{S} o {(P,Q)} [{(RQ)}

(Trs)
{(P,R)} f2g9{(Q,9)} {P} Trs(f) {R}

P'=P (P} f{Q} Q=¢Q
{P'} F{Q"

(csq)

Hoare Logic for Continuous Systems

€S (axiom) (P} F{Q} {Q}g{R} (©)
{Py (P} {P}gof{R}

(P} F{Q} {R}g{S} o {(P,Q)} [{(RQ)}
{(PR)} f@g{(Q 9} {P} Trs(f) {R}

(Trs)

P'=P (P} f{Q} Q=¢Q
{P'} F{Q"

(csq)

Hoare logic translates networks into (differential) equations!

Abstract Hoare Logic

L Instantiations

Continuous systems

Example

Y

Tr((1, [) e Vo (+)) X

a1} (42 [()
oVl tae s (ernara i i w)
42 [)09 {@2) o

{2 (1)00 () (w.2) -

2} T,)07 o () ()

1@} +s) [

2 Vet nesa) (oot @) @
fe 2} (1)0V {n.2) o

{2 (1 100 (+) (w.2) -

2} T, 070 () ()

Example

(L, f) o Vo (4)) H(? :
y=x+z - f

Y

A

= [y=y—z

J@+z) ==
1} (+a) [()
e 42} Vil taeta) (@raeta) @) {02}

; ©)
fe 2} (1)0V (7)) o

{2 (100 (+) (w.2) -

2} T, 070 () ()

Abstract Hoare Logic
L Instantiations

Continuous systems

Summary

@ Abstraction of Hoare logic

o Flowcharts programs
o Pointer programs
o ...

e Future work:

o Total correctness
o Higher order programs
o Concurrency

o Continuous systems
o Finding loop invariants = solving differential equations

o Future work:
o Use modularity to partially solve diff equations
o Reason with black boxes
o Non linear systems

	Main Part
	Introduction
	Hoare logic
	TMC and system categories

	Abstract Hoare logic
	Verification functor
	Abstract logical rules

	Instantiations
	While programs: partial correctness
	Pointer programs: partial correctness
	While programs: complexity and termination
	Stream circuits
	Continuous systems

