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Introduction

Hoare logic

Hoare Logic

Hoare triples: {P} f {Q}

Partial correctness

If input satisfies P then output (if terminates) satisfies Q

Partial correctness (pointer programs)

If input satisfies P then program does not abort and output (if
terminates) satisfies Q

Backward reasoning

For output to satisfy Q it is sufficient that input satisfies P

Total correctness

If input satisfies P then f terminates and output satisfies Q



Abstract Hoare Logic

Introduction

Hoare logic

Hoare Logic

Higher order programs

Parallel programs

. . .

Continuous systems



Abstract Hoare Logic

Introduction

Hoare logic

Hoare Logic

Higher order programs

Parallel programs

. . .

Continuous systems



Abstract Hoare Logic

Introduction

Hoare logic

Motivation

Develop Hoare logic for continuous systems

... or show that such thing does not exist

Proceeded by trying to understand “structure” of Hoare logics



Abstract Hoare Logic

Introduction

Hoare logic

Motivation

Develop Hoare logic for continuous systems

... or show that such thing does not exist

Proceeded by trying to understand “structure” of Hoare logics



Abstract Hoare Logic

Introduction

Hoare logic

Motivation

Develop Hoare logic for continuous systems

... or show that such thing does not exist

Proceeded by trying to understand “structure” of Hoare logics



Abstract Hoare Logic

Introduction

Hoare logic

Related Work

Dijkstra’s predicate transformer

Kozen’s KAT (Kleene Algebras with Test)

Abramsky’s specification categories

Bloom and Esik’s iteration theory

. . .
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TMC and system categories

Monoidal Categories

Sequential composition: categorical composition
f : X → Y , g : Y → Z then g ◦ f : X → Z

g ◦ f - f - g -

Parallel composition: Monoidal operation
f : X → Y , g : Z → W then f ⊗ g : (X ⊗ Z) → (Y ⊗W )

f ⊗ g
f- -

g- -
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Traced Monoidal Categories

Iteration: Trace operation
If f : (X ⊗ Z) → (Y ⊗ Z) then Tr(f) : X → Y

f

X
-

Z

-

Y
-

Z

-

Tr(f)

f

X
-
-

Y
-

Examples

Disjoint union
Tr(f) ≡ {〈x, y〉 : ∃z0, . . . , zn(〈x, z0〉 ∈ f ∧ ... ∧ 〈zn, y〉 ∈ f)}

Cartesian products
Tr(f) ≡ {〈x, y〉 : ∃z(〈〈x, z〉, 〈y, z〉〉 ∈ f)}
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms Sb ⊆ Sm, so-called basic systems, such that
cl(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (Σ → Σ ] Σ) Sum (Σ× Σ → Σ)

Joining of Wires (Σ ] Σ → Σ) Splitting of Wires (Σ → Σ× Σ)

Assignment (Σ → Σ) Scalar Multiplication (Σ → Σ)

Register (Σ → Σ)
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Pre Order

Hoare Logic Abstract Hoare Logic

Pre/Post-conditions Elements of pre-orders

Logical implication Partial order

Rule of consequence Monotonicity

Loop invariants Fixed points

. . . . . .

Hoare logic derived from embedding of a TMC into category of pre-orders
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Abstract Hoare logic

Pre Order

H

Pro

H(f)
H(X)

H(Y)

f
X

Y

S
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Abstract Hoare logic

Verification functor

Verification Functor

Definition (Verification functor)

A strict monoidal functor H : S → Pro is called a verification functor for
S if it satisfies:

(1) trace soundness

∃QH(Z)(H(f)〈P,Q〉 v 〈R,Q〉) ⇒ H(Tr(f))(P ) v R

(2) trace completeness

H(Tr(f))(P ) v R ⇒ ∃QH(Z)(H(f)〈P,Q〉 v 〈R,Q〉)

for all f : X ⊗ Z → Y ⊗ Z in S, and P ∈ H(X), R ∈ H(Y ).
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Abstract Hoare logic

Verification functor

Abstract Hoare Triples

Pro

H(f)
H(X)

H(Y)

f
X

Y

S

H

P ∈ H(X)
Q ∈ H(Y)

{P} f {Q} H(f)(P) ⊆ Q
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Abstract Hoare logic

Verification functor

Abstract Hoare Triples

Let

H : S → Pro be a verification functor

f : X → Y is a morphism (system) in S
P ∈ H(X) and Q ∈ H(Y )

Definition (Abstract Hoare triples)

We define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) vH(Y ) Q
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Abstract logical rules

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S → Pro:

f ∈ Sb
(axiom)

{P} f {H(f)(P )}

{P} f {Q} {Q} g {R}
(◦)

{P} g ◦ f {R}

{P} f {Q} {R} g {S}
(⊗)

{〈P,R〉} f ⊗ g {〈Q,S〉}

{〈P,Q〉} f {〈R,Q〉}
(TrS)

{P} TrS(f) {R}

P ′ vX P {P} f {Q} Q vY Q′

(csq)
{P ′} f {Q′}
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Instantiations

While programs: partial correctness

While Programs

Var: set of program variables

Store Σ : Var → Z

Atomic programs

- Assignment (x := t) : Σ → Σ
- Joining ∆ : Σ ] Σ → Σ
- Boolean test ifb : Σ → Σ ] Σ
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Instantiations

While programs: partial correctness

While Programs (partial correctness, forward reasoning)

Pre order (P(Σ),⊆)

H(f)(P ) :≡ {y ∈ Y : ∃x∈P (f(x) = y)}
H(f)(P ) :≡ SPC(f, P )

{P} f {Q} means H(f)(P ) ⊆ Q, i.e.

“if P holds before execution then (if program terminates)
Q holds afterwards”

For the basic systems we have:

{P} x := t {∃x0(P [x0/x] ∧ x = t[x0/x])}

{〈P,Q〉} ∆ {P ∨Q}

{P} ifb {〈P ∧ b, P ∧ ¬b〉}
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Instantiations

While programs: partial correctness

While Programs (partial correctness, backward reasoning)

Pre order (P(Σ),⊇)

H(f)(P ) :≡ {x ∈ X : f(x) ∈ Q}
H(f)(P ) :≡ WPC(f, P )

{P} f {Q} means H(f)(P ) ⊇ Q, i.e.

“in order for P to hold after (terminating) execution
it is sufficient that Q holds before”

For the basic systems we have:

{P} x := t {P [t/x]}

{P} ∆ {〈P, P 〉}

{〈P,Q〉} ifb {(P ∧ b) ∨ (Q ∧ ¬b)}
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Instantiations

While programs: partial correctness

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr(

(1 ] C) ◦ ifb ◦∆

)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}
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Instantiations

Pointer programs: partial correctness

Pointer Programs

Store Σ : Var → Z
Heap Π : partial functions N → Z with finite domain

State : (Σ×Π) ∪ {abort}

Atomic programs

- Look up (x := [t])
- Mutation ([t] := s)
- Allocation (x := new(t))
- Deallocation disp(t)
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Instantiations

Pointer programs: partial correctness

Separation Logic

Pre order (P(Σ×Π),⊇)

H(f)(P ) :≡ WPC(f, P )

{P} f {Q} means H(f)(P ) ⊇ Q, i.e.

“if Q holds before execution then f does not abort and
if terminates output satisfies P”

For the basic systems we have:

{P} x := [t] {∃v′((t 7→ v′) ∗ ((t 7→ v′)−∗P [v′/x]))}

{P} [t] := s {(t 7→ −) ∗ ((t 7→ s)−∗P )}

{P} x := new(t) {∀i((i 7→ t)−∗P [i/x])}

{P} disp(t) {(t 7→ −) ∗ P}
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Instantiations

While programs: complexity and termination

Hoare Logic for Complexity (backward reasoning)

Pre order (Σ → N∞,≤)

H(f)(P )(ρ) :≡ P (f(ρ)) + (time to execute f on ρ)

{P} f {Q} means ∀ρ(H(f)(P )(ρ) ≤ Q(ρ))
“starting with Q credits we can run f and still have P left”

For the basic systems we have:

{P} x := t {P [t] + 1}

{P} ∆ {〈P + 1, P + 1〉}

{〈P,Q〉} ifb {max{P,Q}+ 1}
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Instantiations

Stream circuits

Stream Circuits

Smooth functions can be represented as streams Rω

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ -

∇
��*
HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)
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Instantiations

Stream circuits

Hoare Logic for Stream Circuits

Pre order (Rω,=)

H(f)(P ) :≡ f(P )

{P} f {Q} means f〈P,Q〉
“input P is related to output Q”

For the basic systems we have:

{P} a× {aP}

{〈P,Q〉} (+) {P + Q}

{P} ∇ {〈P, P 〉}

{P} R {0 ∗ P}
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Instantiations

Continuous systems

Hoare Logic for Continuous Systems

f ∈ Sb
(axiom)

{P} f {f(P )}

{P} f {Q} {Q} g {R}
(◦)

{P} g ◦ f {R}

{P} f {Q} {R} g {S}
(⊗)

{〈P,R〉} f ⊗ g {〈Q,S〉}

{〈P,Q〉} f {〈R,Q〉}
(TrS)

{P} TrS(f) {R}

P ′ = P {P} f {Q} Q = Q′

(csq)
{P ′} f {Q′}

Hoare logic translates networks into (differential) equations!
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Continuous systems

Example

Tr(〈1,
∫
〉 ◦ ∇ ◦ (+))

y = x + z∫
(x + z) = z

⇒
∫

y = y − x

- k+ -

∫6

�

x y

z

{x + z} ∇ {〈x + z, x + z〉}

{x + z} 1 {y} {x + z}
∫
{z}

{〈x + z, x + z〉} 〈1,

∫
〉 {〈y, z〉}

(◦)
{x + z} 〈1,

∫
〉 ◦ ∇ {〈y, z〉}

(◦)
{〈x, z〉} 〈1,

∫
〉 ◦ ∇ ◦ (+) {〈y, z〉}

(Tr)
{x} Tr(〈1,

∫
〉 ◦ ∇ ◦ (+)) {y}
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Instantiations

Continuous systems

Summary

Abstraction of Hoare logic

Flowcharts programs
Pointer programs
. . .

Future work:

Total correctness
Higher order programs
Concurrency

Continuous systems

Finding loop invariants = solving differential equations

Future work:

Use modularity to partially solve diff equations
Reason with black boxes
Non linear systems


	Main Part
	Introduction
	Hoare logic
	TMC and system categories

	Abstract Hoare logic
	Verification functor
	Abstract logical rules

	Instantiations
	While programs: partial correctness
	Pointer programs: partial correctness
	While programs: complexity and termination
	Stream circuits
	Continuous systems



