
The Knowledge Engineering Review, Vol. 15:3, 2000, 257±284
Printed in the United Kingdom
Copyright # 2000, Cambridge University Press

Building large-scale Bayesian networks

MART IN NE I L 1 , NORMAN FENTON 1 and LAR S N I E L SON 2

1Risk Assessment and Decision Analysis Research (RADAR) Group, Computer Science Department, Queen Mary and

West®eld College, University of London and Agena Ltd, London, UK
2Hugin Expert A/S, Aalborg, Denmark

Abstract

Bayesian networks (BNs) model problems that involve uncertainty. A BN is a directed graph, whose

nodes are the uncertain variables and whose edges are the causal or in¯uential links between the

variables. Associated with each node is a set of conditional probability functions that model the

uncertain relationship between the node and its parents. The bene®ts of using BNs to model

uncertain domains are well known, especially since the recent breakthroughs in algorithms and tools

to implement them. However, there have been serious problems for practitioners trying to use BNs

to solve realistic problems. This is because, although the tools make it possible to execute large-scale

BNs e�ciently, there have been no guidelines on building BNs. Speci®cally, practitioners face two

signi®cant barriers. The ®rst barrier is that of specifying the graph structure such that it is a sensible

model of the types of reasoning being applied. The second barrier is that of eliciting the conditional

probability values. In this paper we concentrate on this ®rst problem. Our solution is based on the

notion of generally applicable ``building blocks'', called idioms, which serve solution patterns. These

can then in turn be combined into larger BNs, using simple combination rules and by exploiting

recent ideas on modular and object oriented BNs (OOBNs). This approach, which has been

implemented in a BN tool, can be applied in many problem domains. We use examples to illustrate

how it has been applied to build large-scale BNs for predicting software safety. In the paper we

review related research from the knowledge and software engineering literature. This provides some

context to the work and supports our argument that BN knowledge engineers require the same types

of processes, methods and strategies enjoyed by systems and software engineers if they are to

succeed in producing timely, quality and cost-e�ective BN decision support solutions.

1 Introduction

Almost all realistic decision or prediction problems involve reasoning with uncertainty. Bayesian

networks (also known as Bayesian belief networks, causal probabilistic networks, causal nets,

graphical probability networks, probabilistic cause±e�ect models and probabilistic in¯uence

diagrams) are an increasingly popular formalism for solving such problems. A Bayesian network

(BN) is a directed graph (like the one in Figure 1), whose nodes are the uncertain variables and

whose edges are the causal or in¯uential links between the variables. Associated with each node is a

set of conditional probability values that model the uncertain relationship between the node and its

parents. The underlying theory of BNs combines Bayesian probability theory and the notion of

conditional independence. For introductory tutorial material on BNs see Agena (1999) and Hugin

(1999).

Although Bayesian probability theory has been around for a long time it is only since the 1980s

that e�cient algorithms (and tools to implement them) taking advantage of conditional indepen-

dence, have been developed (Jensen, 1996; Gilks et al., 1994). The recent explosion of interest in BNs

is due to these developments, which mean that realistic size problems can now be solved. These

recent developments, in our view, make BNs the best method for reasoning about uncertainty.



To date BNs have proven useful in applications such as medical diagnosis and diagnosis of

mechanical failures. Their most celebrated recent use has been by Microsoft, where BNs are used in

the intelligent help assistants in Microsoft O�ce (Heckerman & Horvitz, 1998). Our own interest in

applying BNs stems from the problem of predicting the reliability of complex systems. Our objective

was to improve predictions about these systems by incorporating diverse evidence, such as

subjective judgements about the quality of the design process, along with objective data such as

the test results themselves. Since 1993 we have been involved in many collaborative R&D projects in

which we have built BNs for real applications ranging from predicting vehicle reliability for the UK

Defence Research Agency to predicting software quality in consumer electronics (Fenton et al.,

1999; SERENE, 1999a).

Because of our extensive practical use of BNs we are well aware of their bene®ts in modelling

uncertain domains. However, we are also aware of the problems. Practitioners wishing to use BNs

to solve large-scale problems have faced two signi®cant barriers that have dramatically restricted

exploitation. The ®rst barrier is that of producing the ``right'' graphÐone that it is a sensible model

of the types of reasoning being applied. The second barrier occurs when eliciting the conditional

probability values, from a domain expert. For a graph containing many combinations of nodes,

where each may have a large number of discrete or continuous values, this is infeasible. Although

there has been extensive theoretical research on BNs there is little guidance in the literature on how

to tackle these two problems of scale. In the SERENE project (SERENE, 1999a) we arrived at what

we feel are very good partial solutions to both problems, but in this paper we concentrate on the ®rst

problem of specifying a sensible BN graph structure. Although crucial to the implementation of

BNs we do not need to make any assumptions about probability assignments to support the

arguments made in this paper. A detailed description of how we have addressed the probability

elicitation problem is the subject of a separate paper.

The SERENE project involved several partners (CSR, Hugin, ERA Technology, ElectriciteÂ de

France, TuÈ v Hamburg and Objectif Technologie) all building BNs to model di�erent safety

assessment approaches. CSR (City University) and Hugin were the technology providers. At the

same time a consultancy company, Agena Ltd, was set up by CSR personnel to apply BNs in other

real-world projects. Recently we have set up the Risk Assessment and Decision Analysis Research

(RADAR) group at Queen Mary and West®eld College, University of London, to pursue our

Figure 1 Example Bayesian network

m . n e i l e t a l . 258



research ideas. As a result of an analysis of many dozens of BNs we discovered that there were a

small number of generally applicable ``building blocks'' from which all the BNs could be

constructed. These building blocks, which we call ``idioms'', can be combined into objects. These

can then in turn be combined into larger BNs, using simple combination rules and by exploiting

recent ideas on Object Oriented BNs (OOBNs). The SERENE tool (SERENE, 1999b) and method

(SERENE, 1999a) was constructed to implement these ideas in the domain of system safety

assessment. However, we believe these ideas can be applied in many di�erent problem domains. We

believe our work is a major breakthrough for BN applications.

From a practitioner's point of view the process of compiling and executing a BN, using the latest

software tools, is relatively painless given the accuracy and speed of the current algorithms.

However, the problems of building a complete BN for a particular ``large'' problem remain, i.e.

how to

. build the graph structure and

. de®ne the node probability tables for each node of the graph.

Despite the critical importance the graph plays there is little guidance in the literature on how to

build an appropriate graph structure for a BN. Where realistic examples have been presented in the

literature they have been presented as a ®nal result without any accompanying description of how

they arrived at the particular graph. In the literature much more attention is given to the algorithmic

properties of BNs than to the method of actually building them in practice.

In Section 2 we provide an overview of the foundations of BNs and in Section 3 we review related

work from the software and knowledge engineering literature on how to build BN models in

practice. This provides some motivation for our ideas on the BN development process, the

implementation of OOBNs in the SERENE tool and the use of idioms to enable pattern matching

and reuse. These are discussed in Section 4 on building large-scale BNs. The idioms are de®ned and

described in Section 5, and some example idiom instantiations are provided for each idiom. Section

6 gives an example of how a real BN application, for system safety assessment, was constructed

using idioms and objects. In Section 7 we o�er some conclusions, and describe brie¯y our

complementary work to solve the second problem of building large-scale BNs, namely de®ning

large probability tables.

2 Bayesian networks

BNs enable reasoning under uncertainty and combine the advantages of an intuitive visual

representation with a sound mathematical basis in Bayesian probability. With BNs it is possible to

articulate expert beliefs about the dependencies between di�erent variables and to propagate

consistently the impact of evidence on the probabilities of uncertain outcomes. BNs allow an

injection of scienti®c rigour when the probability distributions associated with individual nodes are

simply ``expert opinions''.

A Bayesian network is a causal graph where the nodes represent random variables associated with

a node probability table (NPT).

The causal graph is a directed graph where the connections between nodes are all directed edges

(see Figure 1). The directed edges de®ne causal relationships.1 If there is a directed edge (link) from

node A to node B, A might be said to have causal impact on B.

For example, in Figure 1 poor-quality suppliers are known to accidentally introduce faults in

software products (incorrectness), so in this BN there would be a link from node ``supplier quality''

1 Strictly speaking a BN is a mathematical formalism where the directed edges model conditional dependency
relations. Such a de®nition is free from semantic connotations about the real world. However, what makes BNs

so powerful as a method for knowledge representation, is that the links can often be interpreted as
representations of causal knowledge about the world. This has the advantage of making BNs easier to
understand and explain. Clearly, given the broad de®nition of conditioning, BNs can also model deterministic,

statistical and analogical knowledge in a meaningful way.

Building large-scale Bayesian networks 259



to node ``correctness of solution''. We shall talk about parents and children when referring to links.

We say that an edge goes from the parent to the child.

The nodes in the BN represent random variables. A random variable has a number of states (e.g.

``yes'' and ``no'') and a probability distribution for the states where the sum of the probabilities of all

states should be 1. In this way a BN model is subject to the standard axioms of probability theory.

The conditional probability tables associated with the nodes of a BN determine the strength of the

links of the graph and are used to calculate the probability distribution of each node in the BN.

Specifying the conditional probability of the node, given all its parents (the parent nodes having

directed links to the child node), does this. In our example the node ``correctness of solution'' had

``intrinsic complexity'' and ``supplier quality'' as parents, the conditional probability table

p(correctness of solution | supplier quality, intrinsic complexity) should be associated with node

``correctness of solution''. If a node has no parents a prior probability table of this node is associated

with it. This is simply a probability distribution over of the states of the node.

In order to reduce the number of possible combinations of node relations in the model, BNs are

constructed using assumptions about the conditional dependencies between nodes. In this way we

can reduce the number of node combinations that we have to consider. For example, in our model,

from Figure 1, the number of valid connections between nodes has been reduced, by virtue of the

conditional dependence assumptions, from nine factorial to ten. Nodes that are directly dependent,

either logically or by cause±e�ect, are linked in the graph. Nodes that are indirectly dependent on

one another, but which are not directly linked, are connected through a chain of shared linked

nodes. Therefore, by using domain knowledge we can produce a model that makes sense and

reduces the computational power needed to solve it.

Once a BN is built it can be executed using an appropriate propagation algorithm, such as the

Hugin algorithm (Jensen, 1996). This involves calculating the joint probability table for the model

(probability of all combined states for all nodes) by exploiting the BN's conditional probability

structure to reduce the computational space. Even then, for large BNs that contain undirected cycles

the computing power needed to calculate the joint probability table directly from the conditional

probability tables is enormous. Instead, the junction tree representation is used to localise

computations to those nodes in the graph that are directly related. The full BN graph is transformed

into the junction tree by collapsing connected nodes into cliques and eliminating cyclic links between

cliques. The key point here is that propagating the e�ects of observations throughout the BN can be

done using only messages passed betweenÐand local computations done withinÐthe cliques of the

junction tree rather than the full graph. The graph transformation process is computationally hard

but it only needs to be produced once o�ine. Propagation of the e�ects of new evidence in the BN is

performed using Bayes's theorem over the compiled junction tree. For full details see Jensen (1996).

Once a BN has been compiled it can be executed and exhibits the following two key features:

. the e�ects of observations entered into one or more nodes can be propagated throughout the net,

in any direction, and the marginal distributions of all nodes updated; and

. only relevant inferences can be made in the BN. The BN uses the conditional dependency

structure and the current knowledge base to determine which inferences are valid.

3 Related work

In this section we begin with a brief overview of the textbook literature on building the digraph

component of a BN (Section 3.1). Next, in Section 3.2, we examine the role of modules and object

orientation in representing and organising a BN. Recent work on building BNs from fragments is

described in Section 3.3 and ®nally we discuss ways of managing the process of BN construction in

Section 3.4. In reviewing related work we focused on research done speci®cally on knowledge

engineering of large BNs but also put such research in the wider systems and software engineering

context because we believe that knowledge engineers and software engineers share the same

problems and challenges.

m . n e i l e t a l . 260



We do not review all of the tricks and tips that might help the practitioner build BNs in practice,

like noisy-OR (Jensen, 1996) or the partitioning of probability tables (Heckerman, 1990). As we

mentioned earlier we avoid discussing the di�cult problem of how to build probability tables in this

paper, not because we do not have anything to say here but because getting the graph structure right

is a prerequisite for meaningful elicitation of any probabilities. Probability elicitation for very large

BNs can be done. The Hail®nder project (Hail®nder, 1999) presents a very positive experience of

probability elicitation free of the problems presented in the cognitive psychology literature (Wright

& Ayton, 1994).

3.1 Building the BN digraph

Much of the literature on BNs uses very simple examples to show how to build sensible graphs for

particular problems. The standard texts on BNs, Pearl (1988) and Jensen (1996), use examples where

Mr Holmes and Dr Watson are involved in a series of episodes where they wish to infer the

probability of icy roads, burglary and earthquakes from uncertain evidence. The earthquake

example is as follows:

Mr Holmes is working at his o�ce when he receives a telephone call from Dr Watson who tells him that
Mr Holmes' burglar alarm A has gone o�. Mr Holmes rushes to his car & heads for home. On his way he
listens to the radio R, and in the news it is told that there has been a small earthquake E in the area.

Knowing that earthquakes have a tendency to turn the burglar alarm on he returns to his work leaving his
neighbours the pleasure of the noise. (Jensen, 1996)

Figure 2 shows the BN for this example. The nodes here are all BooleanÐtheir states are either true

or false. There are two key points to note here:

1. The example is small enough that the causal directions of the edges are obvious. A burglary causes

the alarm to sound; the earthquake causes the radio station to issue a news report and also causes

the alarm to sound.

2. The actual inferences made can run counter to the edge directions. From the alarm sounding

Holmes inferred that a burglary had taken place and from the radio sounding he inferred that an

earthquake had occurred. Only when explaining away the burglary hypothesis did Holmes

reason along the edge from earthquake to alarm.

Real-life problems are rarely as small as this exampleÐhow, then, do we scale up what we can learn

from small, often ®ctitious examples, to real-world prediction problems? Also, given that we could

build a large BN for a real problem, we need to ensure that the edge directions represented do not

con¯ate ``cause to e�ect'' node directions with the node directions implied by the inferences we

might wish to make. Figure 3 shows a simple example of this where we model the act of placing a

hand through an open window to assess the temperature.

Figure 2 A BN model for the earthquake example

Building large-scale Bayesian networks 261



In Figure 3(a), the two nodes ``temperature outside'' and ``cold hand'' have the following

conditional probability tables:

p(temperature outside), p(cold hand | temperature outside)

In Figure 3(b), the conditional probability tables are:

p(temperature outside | cold hand), p(cold hand)

Mathematically, there is no reason to choose one over the other in this small caseÐyou can in both

cases calculate the marginal distribution for each of them correctly. However, in practical situations

mathematical equivalence is not the sole criterion. Here the causal relationship is modelled by (a)

because the temperature outside causes one's hand to become cold. It is also easier to think of the

prior probability distribution for the temperature outside rather than think of the prior distribution

of having cold hands independent of the outside temperature.

From the perspective of probability elicitation it seems easier, though, to consider

p(temperature outside | cold hands)

than

p(cold hands | temperature outside)

simply because the arrow follows the direction of the inference we wish to make; we reason from the

evidence available to the claim made. A BN can model both of these successfully in the sense that

``cause to e�ect'' and ``e�ect to cause'' are mathematically equivalent. However, applying uniform

interpretations are critical if we are to build large networks with meaningful semantics.

In BNs the process of determining what evidence will update which node is determined by the

conditional dependency structure. The main area of guidance for building sensible structures stem

from the de®nitions of the three types of dependency connection or ``d-connection''.

In a BN three types of d-connection (dependency) topology, and how they operate, have been

identi®ed and are shown in Figure 4.

The de®nitions of the di�erent types of d-connection are

a) Serial d-connection: Node C is conditionally dependent on B and B is conditionally dependent on

A. Entering hard evidence at node A or C will lead to an update in the probability distribution of

B. However, if we enter evidence at node B only we say that nodes A and C are conditionally

independent given evidence at node B. This means that evidence at node B ``blocks the pipeline''.

b) Converging d-connection: Node B is conditionally dependent on nodes A and C. Entering hard

evidence at node A will update node B but will have no e�ect on node C. If we have entered

Figure 3 Edge direction problem

m . n e i l e t a l . 262



evidence at node B then entering evidence at node A will update node C. Here nodes A and C are

conditionally dependent given evidence at node B.

c) Diverging d-connection: Nodes A and C are conditionally dependent on node B. Entering hard

evidence at node B will a�ect nodes A and C, but if we then enter evidence at node A it will not

a�ect C when there is evidence at node B. Here nodes A and C are conditionally independent

given evidence at node B.

By using these ideas we can postulate topologies connecting small numbers of nodes and

hypothesise the e�ects on one node of entering evidence at another. The answer to the question

``would entering data here e�ect the conclusion reached here, given that we know this datum over

here?'' might help indicate the type of d-connection at play in the expert's reasoning. Clearly this

process is very di�cult to apply in practice because experts do not easily think in terms of

conditional dependencies and it can only be done reasonably for small BN topologies.

3.2 Modules and object-orientation

The bene®ts of constructing software systems from components or modules are well known and the

properties that modular systems must contain were articulated as early as 1972 (Parnas, 1972). In

the 1970s and early 1980s structured methods were introduced, such as the Jackson-structured

design (JSD) method (Jackson, 1975), to help control complexity and the intellectual process of

large-systems design. Crucial concepts in the structured approach included functional decomposi-

tion and abstract data types.

In the late 1980s object-oriented (OO) methods were introduced as a way of maximising the reuse

of modules by ensuring that modules were well formed and their interface complexity was controlled

(Booch, 1993; Rumbaugh et al., 1991). OO methods are now in widespread use, the most prominent

being the uni®ed modelling language (UML) (Booch et al., 1998). OO design methods exhibit a

number of desirable properties, the major ones being abstraction, inheritance and encapsulation.

Abstraction allows the construction of classes of objects that are potentially more reusable and

internally cohesive. Inheritance via a hierarchical organisation means that objects can inherit

attributes and computational operations of parent classes. Encapsulation ensures that the methods

Figure 4 Pipeline, converging and diverging d-connections

Building large-scale Bayesian networks 263



and attributes naturally belonging to objects are self-contained and can only be accessed via their

public interfaces.

In Koller & Pfe�er (1997) an OO approach has been adopted for representing and constructing

large BNs (the approach is naturally called OOBN). Network fragments become classes, both

variables (nodes) and instantiated BN fragments become objects (simple and complex) and

encapsulation is implemented via interface and private variables. However, they stopped short of

de®ning a fully OO method of inheritance via a class hierarchy and did not cover any of the more

esoteric features of OO like dynamic polymorphism.

The key bene®ts of OOBNs to the practitioner are that both knowledge declaration and

probabilistic inference are modular. Individual objects should be separately compilable and query-

complete. Also, the OO representation speci®es an organised structure for elicitation of the graph

structure and navigation during use.

3.3 Building BNs from fragments

It is standard practice in systems and software engineering to build systems from the ``bottom up''

using components or modules that when joined together, perhaps using OO methods, form the

complete system (Sommerville, 1992). The bottom-up approach relies on matching problems to

solutions in the form of reusable programmes or designs. In contrast, the BN literature has

historically presented ``complete'', albeit small, BNs in their entirety without describing how the

complete BN came to be.

Laskey and Mahoney recognised that BN construction required a method for specifying knowl-

edge in larger, semantically meaningful, units they called network ``fragments'' (Laskey &

Mahoney, 1997). Before their work it was not clear explicitly how BNs might best be organised as

components or modules. Laskey and Mahoney also argued that current approaches lacked a means

of constructing BNs from components and ways of varying BN models from problem instance to

problem instance.

Under their scheme a fragment is a set of related random variables that could be constructed and

reasoned about separately from other fragments. Ideally, fragments must make sense to the expert

who must be able to supply some underlying motive or reason for them belonging together.

Additionally, fragments should formally respect the syntax and semantics of BNs. Also (in

Mahoney & Laskey, 1996), they demonstrate the use of stubs to represent collections of BN nodes

that have yet to be de®ned, with the purpose of allowing early prototyping of partial BNs.

Laskey and Mahoney use OO concepts to represent and manipulate fragments. Input and

resident variables are used to specify interfaces and encapsulate private data respectively. Two types

of object were identi®edÐinput and result fragments. Input fragments are combined to form a

result fragment. To join input fragments together an in¯uence combination rule is needed to compute

local probability distributions for the combined, or result, fragment. For example, a fragment

p(A | B) might be joined to p(A |C) to yield the result fragment p(A | B, C) using an in¯uence

combination rule, such as noisy-OR, to de®ne the NPT for p(A | B, C).

Encapsulation is central to Koller and Pfe�er's de®nition of an OOBN. Encapsulated objects or

modules should be loosely connected and cohesive (Myers, 1975). However, despite their purported

adoption of OO ideas, Laskey and Mahoney's scheme does not strictly adhere to this requirement.

This is because di�erent fragments can contain the same child node as a resident variable and, as a

consequence of this, when creating a fragment we must know whether it shares resident nodes with

other fragments in order to de®ne the in¯uence combination rule. Clearly this is not a problem when

the in¯uence combination rule treats all parent nodes equally irrespective of type and value, as a

form of dynamic polymorphism, but such a combination rule would be very di�cult to conceive and

implement.

m . n e i l e t a l . 264



3.4 Managing systems development

Large knowledge-based systems, including BNs, are subject to the same forces as any other

substantial engineering undertaking. The customer might not know what they want; the knowledge

engineer may have di�culty understanding the domain; the tools and methods applied may be

imperfect; dealing with multiple ever-changing design abstractions is di�cult and so on. In the end

these issues, along with people and economic and organisational factors, will impact on the budget,

schedule and quality of the end product.

Explicit management is necessary for large BN projects. Knowledge engineers need to manage the

representation and construction of BNs using methods like OOBNs and fragments. They also need

processes for specifying, designing, implementing, evaluating and changing the BN system and its

intermediate representations. In software engineering the choice of process centres around the

management of risk (Boehm, 1981). Risky projects can be characterised by ill-understood and

ambiguous requirements, inexperienced solution providers and complex technology. Incremental

development, prototyping and time-boxing are recommended processes for such risky projects

because they attempt to resolve requirement problems early and provide some means of evaluating

the solution as it progresses. The key to success here is the existence of feedback loops within the

process, such as those present in the spiral model (Boehm, 1981). For more established problem

domains, with fewer risks, a sequential life-cycle process is adequate. This simply involves

specifying, designing, implementing and testing the solution in one sequence with few or no

feedback steps. Of course, both processes are simpli®ed extremes and most projects will experience

a mixture of both in practice.

The problem of managing di�erent levels of BN re®nement and the need for a systems engineering

process have been recognised (Mahoney & Laskey, 1996). Knowledge engineering is a process of

discovery over time, not extraction of a perfect problem statement from an expert that can be

automatically turned into a BN solution in a single step. Knowledge engineers work with the expert

to decompose the system, recognise patterns at the macro and micro level (Shaw & Garland, 1996)

and continually change the model as both sides' understanding increases.

4 Building large-scale BNs

Our approach to dealing with the problems of building large-scale BNs has been in¯uenced by the

experiences and innovations described in Section 3. We identi®ed three main goals to improve how

we build any large BN system:

1. apply a process that explicitly manages the risks presented during development,

2. apply a means of combining components in such a way that complexity is easily managed and

3. develop a means of easily identifying and constructing small, reusable, components that form the

foundations of a BN.

4.1 Process model

With regard to our ®rst goalÐapplying a process that manages riskÐwe developed a derivative of

the spiral model tailored for BN development. This is shown in Figure 5, where boxes represent the

processes and the process inputs/outputs are shown by directed arcs labelled with the input/output

names. Note that only the major stages and artefacts are shown. Note also that we are describing a

very simple model of BN construction. In practice the BNs we develop are embedded in larger

software-based decision-support systems. The BN development process is therefore a sub-process of

a larger software engineering process.

If we assume a sequential process, the model contains six major stages from problem de®nition to

validation of the BN. After problem de®nition, the knowledge engineer matches the problem

description fragments provided by the expert against abstract patterns called ``idioms''. In this

process the problem fragments are made concrete as idiom instantiations, which are then integrated

Building large-scale Bayesian networks 265



into objects. Next, the knowledge engineer elicits and re®nes the node probability tables for each of

the nodes in each object. The objects are then integrated to form the complete BN and inferences

made and test-run for validation purposes. Ideally, real test data or expert opinions not used in

deriving the BN model should be used to validate the model.

At each stage a veri®cation step takes place to determine whether the output product of the stage

is consistent with the requirements of the previous stage and the original problem de®nition. Failure

to pass a veri®cation step results in the invocation of a feedback step that can return the process to

any previous stage. For example, it might become obvious when building the NPT expert that the

BN object may not be quite right. In such a case we may have to rede®ne the idiom instantiations. In

practice we may frequently move between de®ning the probability tables and the graph structure of

objects and idiom instantiations.

For veri®cation and validation we perform a number of tests to determine whether the BN is a

faithful model of the expertise and whether the expert's opinions match real data. These range from

comparing empirical distributions for key nodes with the marginal distribution from the BN.

Likewise we can check consistency by comparing opinions from di�erent experts (we have

successfully performed elicitation sessions with up to a dozen experts at a time) and re-sampling

the same probabilities elicited at di�erent points in time. Aspects of BN validation in practice are

also described in Mahoney & Laskey (1996).

4.2 OOBNs using the SERENE tool

In the SERENE project a prototype software tool was developed to allow practitioners in the area

of safety assessment to build modular BNs from idiom instances. The basic look and feel was based

on the Hugin tool (Hugin, 1999), and an OOBN approach based on the Koller & Pfe�er (1997)

framework.

The tool allows the construction of BN objects with a subset of its nodes de®ned to be interface

Figure 5 BN development process model

m . n e i l e t a l . 266



nodes. The purpose of the interface nodes is to join one object instantiation with other object

instantiations (object instantiations are called abstract nodes). Interface variables are divided into

input and output nodes where input variables are placeholders for external nodes and output nodes

are visible internal nodes that can be used as parents of external nodes or as join links to input nodes.

Figure 6 demonstrates how it would be possible in the SERENE tool to create two objects (left)

and then afterwards instantiate them and combine them inside a third object (right). The dashed,

shaded, nodes represent input nodes while the thick lined, shaded, nodes represent output nodes.

Nodes a and b in Object1 are input nodes. Nodes c, d and e in Object1 are output nodes.

Abstract nodes are displayed with input nodes at the top and output nodes at the bottom. We use

dot (.) notation when we refer to the interface nodes of abstract nodes. For example, Abstract1.c is

the lower left interface variable of object Abstract1.

Looking atObject3 you will notice two di�erent kinds of arc. There are ordinary causal arcs from

Abstract1.c and Abstract1.d to node External2. Then, there are two double-line arcs from External1

to Abstract1.a and Abstract1.e to Abstract2.f. These are join links stating that the child node is a

placeholder for the parent node inside the abstract node. Nodes joined together must be of the same

type (discrete numeric, interval, discrete labelled, Boolean) and have same labels or intervals. For

example, if the node Object1.e is a discrete numeric node with labels {0, 1, 2, 3} then the node

Object2.f must also be discrete numeric with the same labels.

4.3 Identifying reusable patterns as idioms

Together, OOBNs, the use of BN fragments and a process for BN construction only solve part of the

systems engineering problem. We are still left with the challenge of actually identifying the

components we might wish to combine into BN objects. When building software objects

programmers and designers recognise commonly occurring problem types or patterns that serve to

guide the solution to that particular problem (Jackson, 1995).

From our experience of building BNs in a range of application domains we found that experts

were applying very similar types of reasoning over subtly di�erent prediction problems. Moreover,

they often experienced the same kinds of di�culty in trying to represent their ideas in the BNmodel.

In summary these problems were in deciding

. which edge direction to choose,

. whether some of the statements they wished to make were actually uncertain and, if not, whether

they could be represented in a BN,

Figure 6 Two ``leaf '' templates, Object1 and Object2, instantiated into abstract nodes, Abstract1 and

Abstract2 (respectively), inside Object3 and then combined through their interface variables

Building large-scale Bayesian networks 267



. what level of granularity was needed when identifying nodes in the BN and

. whether competing models could somehow be reconciled into one BN model at all.

As a result of these experiences and the problems encountered when trying to build reasonable

graph models we identi®ed a small number of natural and reusable patterns in reasoning to help

when building BNs. We call these patterns ``idioms''. An idiom is de®ned in the Webster's

Dictionary (1913) as:

the syntactical or structural form peculiar to any language; the genius or cast of a language.

We use the term idiom to refer to speci®c BN fragments that represent very generic types of

uncertain reasoning. For idioms we are interested only in the graphical structure and not in any

underlying probabilities. For this reason an idiom is not a BN as such but simply the graphical part

of one. We have found that using idioms speeds up the BN development process and leads to better-

quality BNs.

Although we believe we are the ®rst to develop these ideas to the point where they have been

exploited, the ideas are certainly not new. For example, as early as 1986 Judea Pearl recognised the

importance of idioms and modularity when he remarked,

Fragmented structures of causal organisations are constantly being assembled on the ¯y, as needed, from a

stock of building blocks (Pearl, 1986)

The use of idioms ®lls a crucial gap in the literature on engineering BN systems by helping to identify

the semantics and graph structure syntax of common modes of uncertain reasoning. Also, the

chances of successful elicitation of probability values for NPTs from experts is greatly improved if

the semantics of the idiom instantiation are well understood.

We can use idioms to reuse existing solution patterns, join idiom instantiations to create objects

and with OOBNs combine objects to make systems. In everyday use we have found that the

knowledge engineer tends to view and apply idioms much like structured programming constructs

such as IF-THEN-ELSE and DO-WHILE statements (Dijkstra, 1976). We believe the same bene®ts

accrue when when ``structured'' and standard idioms are employed like structured programming

constructs (Dijkstra, 1968).

In our view, fragments, as de®ned by Laskey and Mahoney, constitute smaller BN building

blocks than idiom instantiations. Syntactically, an idiom instantiation is a combination of

fragments. However, we would argue that an idiom instance is a more cohesive entity than a

fragment because the idiom from which it is derived has associated semantics. A fragment can be

nothing more than a loose association of random variables that are meaningful to the expert, but the

semantics of the associations within a fragment need to be de®ned anew each time a fragment is

created. Thus the use of fragments leads to reuse only at a domain-speci®c level.

5 Idioms

The ®ve idioms identi®ed are:

. de®nitional/synthesis idiomÐmodels the synthesis or combination of many nodes into one node

for the purpose of organising the BN. Also models the deterministic or uncertain de®nitions

between variables;

. cause±consequence idiomÐmodels the uncertainty of an uncertain causal process with observable

consequences;

. measurement idiomÐmodels the uncertainty about the accuracy of a measurement instrument;

. induction idiomÐmodels the uncertainty related to inductive reasoning based on populations of

similar or exchangeable members;

. reconciliation idiomÐmodels the reconciliation of results from competing measurement or

prediction systems.

m . n e i l e t a l . 268



We claim that for constructing large BNs domain knowledge engineers ®nd it easier to use idioms to

construct their BN than following textbook examples or by explicitly examining di�erent possible d-

connection structures between nodes, under di�erent evidence sets. This is because the d-connection

properties required for particular types of reasoning are preserved by the idioms and emerge

through their use. Also, because each idiom is suited to modelling particular types of reasoning, it is

easier to compartmentalise the BN construction process.

In the remainder of this section we de®ne these idioms in detail. Idioms act as a library of patterns

for the BN development process. Knowledge engineers simply compare their current problem, as

described by the expert, with the idioms and reuse the appropriate idiom for the job. By reusing the

idioms we gain the advantage of being able to identify objects that should be more cohesive and self-

contained than objects that have been created without some underlying method. Also, the use of

idioms encourages reuse.

Idiom instantiations are idioms made concrete for a particular problem, with meaningful labels,

but again without de®ning the probability values. Once probability values have been assigned then

they become equivalent to objects in an OOBN and can be used in an OOBN using the same

operations as other objects. This is covered in Section 5.

We do not claim that the idioms identi®ed here form an exhaustive list of all of the types of

reasoning that can be applied in all domains. We have identi®ed idioms from a single, but very large

domainÐthat of systems engineering. BN developers in this domain should ®nd these idioms useful

starting points for de®ning sensible objects but, since we are not claiming completeness, may decide

to identify and de®ne new idioms. However, we do believe that these idioms can be applied in

domains other than systems engineering and as such could provide useful short-cuts in the BN

development process.

5.1 The de®nitional/synthesis idiom

Although BNs are used primarily to model causal relationships between variables, one of the most

commonly occurring class of BN fragments is not causal at all. The de®nitional/synthesis idiom,

shown in Figure 7, models this class of BN fragments and covers each of the following cases where

the synthetic node is determined by the values of its parent nodes using some combination rule.

Case 1. De®nitional relationship between variables. In this case the synthetic node is de®ned in

terms of the nodes: node1, node2, . . ., node n (where n be can be any integer). This does not involve

uncertain inference about one thing based on knowledge of another. For example, ``velocity'', V, of

a moving object is de®ned in terms of ``distance'' travelled, D, and ``time'', T, by the relationship,

V=D/T.

Although D and T alone could be represented in a BN (and would give us all of the information

we might need aboutV), it is useful to representV in the BN along withD and T (as shown in Figure

8). For example, we might be interested in other nodes conditional on V.

Figure 7 De®nitional/synthesis idiom

Building large-scale Bayesian networks 269



Clearly, synthetic nodes, representing de®nitional relations, could be speci®ed as deterministic

functions where we are certain of the relationship between the concepts. Otherwise we would need to

use probabilistic functions to state the degree to which some combination of parent nodes de®ne

some child node. Such a probabilistic relationship would be akin to a principal components model

where some unobservable complex attribute is de®ned as a linear combination of random variables

(Dillan & Goldstein, 1984).

One of the ®rst issues we face when building BNs is that of whether we can combine variables

using some hierarchical structure using a valid organising principle. We might view some nodes as

being of the same type or having the same sort and degree of in¯uence on some other node and

might then wish to combine these. A hierarchy of concepts is simply modelled as a number of

synthesis/de®nitional idioms joined together.

A number of instantiations of this idiom arose in safety arguments, for example those shown in

Figure 9 and Figure 10. In Figure 9 ``safety'' is de®ned in terms of occurrence frequency of failures

and the severity of failures. In Figure 10 ``testing accuracy'' is de®ned in terms of ``tester

experience'', ``testing e�ort'' and ``test coverage''.

Figure 8 Instantiation of de®nitional/synthesis idiom for velocity example

Figure 9 Instantiation of de®nitional/synthesis idiom (safety)

Figure 10 Instantiation of de®nitional/synthesis idiom (testing quality)

m . n e i l e t a l . 270



Case 2: Combining di�erent nodes to reduce e�ects of combinatorial explosion (divorcing). We can

condition some node of interest on the synthetic node, rather than on the parents of the synthetic

node itself, in order to ease probability elicitation and reduce the e�ects of combinatorial explosion.

If the synthetic node is a deterministic function of its parents then it acts as a parameter on its child

node, thus reducing the overhead of knowledge elicitation. For example, if we have four variables,

A, B, C and D, each with four states, where p(A | B, C, D), the number of probability values to

populate the conditional probability table is 44=256. Instead, this could be broken down into two

tables p(A | B, S) and p(S | C, D) by introducing S as the synthetic node, as shown in Figure 11. Now

we only need to model the conditional probability tables for S and A using 43+43=64 probability

values rather than 256.

This technique of cutting down the combinatorial space using synthetic nodes has been called

``divorcing'' by Jensen (1996). Here the synthetic node, S, divorces the parents C and D from B.

Parent nodes can only be divorced from one another when their e�ects on the child node can be

considered separately from the other non-divorced parent node(s). For a synthetic node to be valid

some of its parent node state combinations must be exchangeable, and therefore equivalent, in terms

of their e�ect on the child node. These exchangeable state combinations must also be independent of

any non-divorcing parents, again in terms of their e�ects on the child node. In Figure 11 nodes C

and D are assumed exchangeable with respect to their e�ects on A. So for a given change in the state

value of S it does not matter whether this was caused by a change in either C or D when we come to

consider p(A | B, S). Also, when considering the joint e�ect of parent nodes B and S on child node A

it does not matter whether the state values of node S have been determined by either node C or

node D.

To illustrate this we can consider an example with the topology shown in Figure 11 where node A

represents ``test results'' gained from a campaign of testing, B is the ``safety'' of the system and C

and D represent ``tester competence'' and ``product complexity'' respectively. We can create a

synthetic node S, ``testing quality'', to model the joint e�ects of ``tester competence'' and ``product

complexity'' on the ``test results''. This new BN is shown in Figure 12. Implicit in this model is the

assumption that tester competence and product complexity operate together to de®ne some

synthetic notion of testing quality where, when it comes to eliciting values for p(test results | safety,

testing quality), it does not matter whether poor-quality testing has been caused by incompetent

testers or a very complex product.

The edge directions in the synthesis idiom do not indicate causality (causal links can be joined by

linking it to other idioms). This would not make sense. Rather, the link indicates the direction in

Figure 11 Divorcing of a de®nitional/synthesis idiom instantiation (the dotted links are the ``old'' links and
the continuous links are ``new'')

Building large-scale Bayesian networks 271



which a sub-attribute de®nes an attribute, in combination with other sub-attributes (or attributes

de®ne super-attributes and so on).

5.2 The cause±consequence idiom

The cause±consequence idiom is used to model a causal process in terms of the relationship between

its causes (those events or facts that are inputs to the process) and consequences (those events or

factors that are outputs of the process). The causal process itself can involve transformation of an

existing input into a changed version of that input or by taking an input to produce a new output.

We use the cause±consequence idiom to model situations where we wish to predict the output(s)

produced by some process from knowledge of the input(s) that went into that process.

A causal process can be natural, mechanical or intellectual in nature. A production line producing

cars from parts, according to some production plan, is a causal process. Producing software from a

speci®cation using a team of programmers is a causal process that produces an output in the form of

a software program. In both cases we might wish to evaluate some attribute of the inputs and the

outputs in order to predict one from the other. For example, the number of faults in the software

program will be dependent on the quality of the speci®cation document and the quality of the

programmers and testing.

The cause±consequence idiom is organised chronologicallyÐthe parent nodes (inputs) can

normally be said to ``follow'', in time, before (or at least contemporaneously with) the child nodes

(outputs). Likewise, support for any assertion of causal reasoning relies on the premise that that

manipulation or change in the causes a�ects the consequences in some observable way (Cook &

Campbell, 1979).

Figure 13 shows the basic cause±consequence idiom. The direction of the arrow indicates causal

direction, whereby the inputs cause some change in the outputs via the causal process.

The underlying causal process is not represented, as a node, in the BN in Figure 13. It is not

necessary to do so since the role of the underlying causal process, in the BNmodel, is represented by

the conditional probability table connecting the output to the input. This information tells us

everything we need to know (at least probabilistically) about the uncertain relationship between

causes and consequences.

Clearly Figure 13 o�ers a rather simplistic model of cause and e�ect since most (or at least

interesting) phenomena will involve many contributory causes and many e�ects. Joining a number

of cause±consequence idioms together can create more realistic models, where the idiom instantia-

tions have a shared output or input node. Also, to help organise the resulting BN, one might deploy

the synthesis idiom to structure the inputs or outputs.

Figure 12 Using the synthesis idiom

m . n e i l e t a l . 272



A simple instantiation of two cause±consequence idioms, joined by the common node ``failures'',

is shown in Figure 14. Here we are predicting the frequency of software failures based on knowledge

about ``problem di�culty'' and ``supplier quality''.

Here the process involves a software supplier producing a product. A good-quality supplier will

be more likely to produce a failure-free piece of software than a poor-quality supplier. However, the

more di�cult the problem to be solved, the more likely it is that faults may be introduced and the

software fail.

5.3 Measurement idiom

We can use BNs to reason about the uncertainty we may have about our own judgements, those of

others or the accuracy of the instruments we use to make measurements. The measurement idiom

represents uncertainties we have about the process of observation. By observation we mean the act

of determining the true attribute, state or characteristic of some entity. The di�erence between this

idiom and the cause±consequence idiom is that here one node is an estimate of the other rather than

each representing attributes of two di�erent entities.

Figure 15 shows the measurement idiom. The edge directions here can be interpreted in a

Figure 13 The cause±consequence idiom

Figure 14 Two cause±consequence idiom instantiations joined (software failures)

Figure 15 Measurement idiom

Building large-scale Bayesian networks 273



straightforward way. The true value must exist before the estimate in order for the act of

measurement to take place. Next, the measurement instrument interacts (physically or functionally)

with the entity under evaluation and produces some result. This result can be more or less accurate

depending on intervening circumstances and biases.

The ``true value of the attribute'' is measured by a measurement instrument (person or machine)

with a known ``estimation accuracy'', the result of which is an ``estimated value of the attribute''.

Within the node ``estimation accuracy'' we could model di�erent types of inaccuracies: expectation

biases and over- and under-con®dence biases.

A classic instantiation of the measurement idiom is the testing example shown in Figure 16.

When we are testing a product to ®nd defects, we use the number of discovered defects as a

surrogate for the true measure that we want, namely the number of inserted defects. In fact the

measured number is dependent on the node ``testing accuracy''. Positive and encouraging test results

could be explained by a combination of two things:

. low number of inserted defects resulting in low number of discovered defects, or

. very poor quality testing resulting in low number of defects detected during testing.

By using the measurement idiom we can explain away false positive results.

The measurement idiom is not intended to model a sequence of repeated experiments in order to

infer the true state. Neither should it be used to model the inferences we might make from other,

perhaps similar, entities. The induction idiom below is more appropriate in these two cases.

5.4 Induction idiom

The induction idiom (shown in Figure 17) involves modelling the process of statistical inference

from a series of similar entities to infer something about a future entity with a similar attribute.

None of the reasoning in the induction idiom is causal. Speci®cally, the idiom has two

components:

Figure 16 Measurement idiom instantiation (testing)

Figure 17 Induction idiom

m . n e i l e t a l . 274



1. It models Bayesian updating to infer the parameters of the population where the entities from

this population are assumed to be exchangeable.

2. It allows the expert to adjust the estimates produced if the entity under consideration is expected

to di�er from the population, i.e. if it is not exchangeable because of changes in context.

In Figure 17 each ``observation i'' is used to estimate the ``population parameter'' used to

characterise the population. This then forms the prior for the next observation. This can be repeated

recursively to provide more accurate estimates for the population. Finally, we can use the

population parameter distribution to forecast the attribute of the entity under consideration.

Essentially, we use the induction idiom to learn the probability distribution for any node in

instantiations of the measurement or cause±consequence idioms. We might therefore use the

induction idiom to learn the probability distribution for ``testing accuracy'' in Figure 16.

The induction idiom represents the basic model for Bayesian inference; in practice there may be

more than one population parameter. Also, the model may contain statistical assumptions about

the stochastic processes involved. These might in turn imply hierarchical models. For a deeper

discussion of Bayesian inference and learning see Speigelhalter & Cowell (1992), Krause (1998).

Popular tools for this include BKD from Bayesware (Ramoni & Sebastiani, 1999), and BUGS

(Gilks et al., 1994), which uses Monte-Carlo-Markov chains (MCMC).

In practice we may feel that historical data is relevant but that this relevance is limited by

di�erences between the forecast context and the historical context. There may be any number of

valid reasons for this, including design changes or changes in how the thing is used. The e�ects of

this reasoning are modelled by the node in Figure 17Ð``context di�erences'' (between population

historical entities and forecast entity)Ðwhich adjusts the population estimate according to how

indicative historical data is about the entity of interest. If the historical data is very dissimilar

compared to the current context, the e�ect here might be simply to make the probability table for

the forecast node a uniform distribution, in order to model our ignorance. If the historical data is

similar, the probability table would be similar to that derived by Bayesian learning. We could also

implement conditional probability tables where we might take dissimilarity to indicate di�erences in

the expectations between population and forecast nodes (say, where we expect improvements over

generations of products).

In some situations the expert may not be able to produce databases of past cases on which to

perform Bayesian updating, but can instead produce the population distribution directly from

memory. In these cases the induction idiom would simply involve three nodes: a node characterising

the population distribution, a forecast for the entity under consideration and a node to model the

degree of exchangeability (similarity). This is shown in Figure 18.

An instantiation of the induction idiom is shown in Figure 19. When performing system testing

we might wish to evaluate the competence of the testing organisation in order to assess the quality of

the testing that is likely to be performed. The historical track record of the organisation might form

a useful database of results to infer the true competence of the organisation. This can be summarised

in the node historical competence, which can be used to infer the current level of competence.

Figure 18 Simpli®ed version of induction idiom

Building large-scale Bayesian networks 275



However, we might feel that the historical track record has been performed on only a sub-set of

systems of interest to us in the future. For example, the previous testing exercises were done for non-

critical applications in the commercial sector rather than for safety-critical applications. Thus, the

assessor might wish to adjust the track record according to the similarity of the track record to the

current case.

Of course, in the majority of cases there is no need to model explicitly the induction idiom in its

full form.We would simply embody the probability distributions learnt from statistical data into the

BN nodes de®ned by our idiom instantiations. There may be some occasions where active statistical

learning, with the underlying statistical distributions, might be best explicitly represented in the BN.

For example, the TRACS project (Fenton et al., 1999) developed a hierarchical BN, as an induction

idiom instantiation, to forecast vehicle sub-system reliabilities and did so within a BN manipulated

by the end-user.

5.5 Reconciliation idiom

In building BNs we found some di�culty when attempting to model attributes that could be

assigned causal probabilities in a BN, but which were also measured by collections of sub-attributes

that themselves had uncertain relations with the attribute. For example, we might be interested in

the e�ects of process quality on fault tolerance (a piece of equipment's ability to tolerate failures in

operation) and also the contribution of various fault tolerance strategies that together de®ne fault

tolerance, such as error checking and error recovery mechanisms. The challenge here is how to

reconcile the equally valid statements p(fault tolerance | process quality) and p(fault tolerance | error

recovery, error checking) given that p(fault tolerance | error checking, error recovery, process

quality) does not make sense.

The objective of the reconciliation idiom is to reconcile independent sources of evidence about a

single attribute of a single entity, where these sources of evidence have been produced by di�erent

measurement or prediction methods (i.e. other BNs). The reconciliation idiom is shown in Figure 20.

The node of interest, node X, is estimated by two independent procedures, model A and model B.

The reconciliation node is a Boolean node. When the reconciliation node is set to ``true'' the value of

X from model A is equal to the value of X from model B. Thus, we allow the ¯ow of evidence from

Figure 19 Induction idiom instantiation (testing competence)

Figure 20 Reconciliation idiom

m . n e i l e t a l . 276



model B to model A. There is, however, one provisoÐshould both sets of evidence prove

contradictory then the inferences cannot obviously be reconciled.

The following example of a reconciliation idiom is typical of many we have come across in safety/

reliability assessment. We have two models to estimate the quality of the testing performed on a

piece of software:

1. prediction from known causal factors (represented by a cause±consequence idiom instantiation)

and

2. inference from sub-attributes of testing quality which when observed give a partial observation of

testing quality (represented by a de®nitional/synthesis idiom instantiation).

The relevant process product idiom instantiation here is shown in Figure 21 (a complex product will

be less easy to test).

The de®nitional/synthesis idiom instantiation in Figure 22 shows how ``test quality'' is de®ned

from the three sub-attributes ``coverage'', ``diversity'' and ``resources''.

We now have two models for inferring the state of test quality: one based on cause±e�ect

reasoning about the testing process and one based on sub-attributes that de®ne the concept of

testing quality. The test quality from the de®nitional/synthesis model is conditionally dependent on

the test quality cause±consequence model, as shown in the instantiation of the prediction/

reconciliation idiom in Figure 23.

Figure 21 A cause±consequence idiom instantiation for test quality

Figure 22 A de®nitional/synthesis idiom instantiation for test quality

Figure 23 Reconciliation idiom instantiation for test quality

Building large-scale Bayesian networks 277



5.6 Choosing the right idiom

In the previous section we explained the individual idioms in some detail. Here we summarise a

sequence of actions that should help users identify the ``right'' set of idioms if they are building a BN

from scratch.

1. Make a list of the entities and their attributes, which you believe to be of relevance to your BN.

2. Consider how the entities and attributes relate to one another. This should lead to subsets of

entities and attributes grouped together.

3. Examine these subsets in terms of the ¯owchart (Figure 24) checklist in order to determine which

idiom is possibly being represented.

Note that some nodes and relations in the idioms may not be relevant to all cases that the analyst

might encounter. It also helps to choose idioms on the basis of the type of reasoning that is taking

place:

. cause±consequence idiomÐcausal reasoning based on production or transformation;

. measurement idiomÐcausal reasoning based on observation;

. induction idiomÐstatistical and analogical reasoning using historical cases to say something

about an unknown case;

. de®nitional/synthesis idiomÐde®nitional reasoning: saying what something is; and

. reconciliation idiomÐreconciling two competing BN models.

5.7 Idiom validation

The set of idioms described above has evolved over a three-year period in the SERENE (1999a) and

IMPRESS projects. They have been subject to intense scrutiny by a wide range of domain experts.

Most importantly, this set of idioms has been shown to be ``complete'' in the software assessment

domain in the sense that every BN we have encountered could be constructed in terms of these

idioms.

Figure 24 Choosing the right idiom

m . n e i l e t a l . 278



To date these idioms have been applied in

. safety argumentation for complex software-intensive systems (Courtois et al., 1998; Fenton et al.,

1998; Neil et al., 1996; SERENE, 1999c),

. software defect density modelling (Fenton & Neil, 1999a; Fenton & Neil, 1999b; Neil & Fenton,

1996),

. software process improvement using statistical process control (SPC) concepts (Lewis, 1998),

. vehicle reliability prediction (Fenton et al., 1999).

6 Building a BN using idioms and objects

Here we show how to build a fairly large BN using idioms and OOBNs. The example is a cut-down

version of a real application developed by Agena Ltd. Some structural and node name changes have

been made to protect con®dentiality. The application involved predicting the safety risk presented

by software-based systems. The customer wanted the capability to

. predict safety early in the system life cycle, ideally at the invitation to tender stage;

. account for information gathered during the development process and from actual test/

measurement of the documentation and intermediate products delivered; and

. evaluate the quality of results produced by independent testing organisations that would assess

the systems before delivery.

The reader will recognise parts of each of the BNs presented from the idiom instantiations presented

in Section 4.

The BN is organised in modules with one core moduleÐthe risk BNÐand a number of satellite

BNsÐthe severity, supplier, test quality and competence BNs. These modules are then joined

together, as objects, to form the safety BN.

The example is su�ciently small to convey the ideas. We have built larger BN models in practice

using the same methods but for reasons of limited space cannot describe them here.

The example uses the SERENE tool to show how the model was constructed.

6.1 The core risk BN

The risk BN involves predicting risk from two main sources:

. test results produced by an independent testing organisation and

. knowledge of the supplier quality and the di�culty of the problem being solved by the system.

We modelled the process of independent testing using the measurement idiom ±

p(test results | risk, test quality)

and the cause±consequence idiom ±

p(test quality | complexity, competence).

The development process component was modelled using the cause±consequence idiom ±

p(failures | problem di�culty, supplier quality) and p(complexity | supplier quality).

Risk is de®ned as the frequency of failure multiplied by the severity of failure. We modelled this

using the de®nitional/synthesis idiom as

p(safety | severity, failures)= severity6 failures.

Figure 25 shows the resulting BN module constructed from these idiom instantiations.

The nodes ``severity'', ``supplier quality'', ``test quality'' and ``competence'' are shared with other

modular BNs and hence are shown as input or output nodes.

Building large-scale Bayesian networks 279



6.2 Satellite BNs

Here we describe the satellite BNs are joined to the core BN. Each satellite BN is displayed in Figure

26(a) to (d).

The ®rst BN is the severity BN and is shown in Figure 26(a). Here the severity of any failure event

was de®ned from two attributesÐ®nancial loss and safety loss (harm to individuals). This was

modelled using the de®nitional/synthesis idiom as

p(severity | safety loss, ®nancial loss)

Figure 25 Risk BN

Figure 26 Satellite BNs

m . n e i l e t a l . 280



Also, any observations made using this synthesis idiom instantiation must be reconciled with the

causal prediction made in the risk BN. Hence we add a reconciliation node with an output node

``severity''. Severity is an output node and is shared with the risk BN.

The quality of suppliers is de®ned according to a number of factors. These are modelled using the

de®nitional synthesis idiom ±

p(supplier quality | strategy, resources) and

p(resources | competence, technical, ®nancial, stability)

Again, the reconciliation idiom is used to reconcile observations made here with the causal

inferences made in the risk BN. The supplier BN is shown in Figure 26(b).

The test quality BN models the de®nition of test quality using the de®nitional/synthesis idiom ±

p(test quality | coverage, diversity, resources)

Again, the reconciliation idiom applies. The test quality BN is shown in Figure 26(c).

The competence BN involves inferring the current competence of the testing organisation from

historical data and some judgements of how informative this data is. This is modelled using the

induction idiom as

p(competence | historical competence, similarity)

as shown in Figure 26(d). Historical competence is used to set a prior distribution on the competence

node in the risk BN. It is therefore set as an input node here and as an output node in the risk BN.

6.3 Safety±risk BN

Finally, we can combine each of these BN objects into one single BNmodel. This is shown in Figure

27 by the safety±risk BN.

Figure 27 Safety±risk BN in SERENE tool

Building large-scale Bayesian networks 281



In Figure 27 abstract nodes are used to display each of the BN objects described earlier. The

double arrows denote the join relationships and identify the interface nodes shared by each module.

From this practical example, in¯uenced by a BN in use, we can see how idioms can help construct

a large-scale BN (the real BN is actually larger still) that can be easily explained to domain experts,

while preserving meaningful d-connections between nodes and respecting the rigorous foundations

underlying BNs.

7 Conclusions

We have argued that large-scale knowledge engineering using BNs faces the same challenges and

problems as those faced by software engineers building large software systems. Intellectual control

of BN development projects requires processes for managing the risk, methods for identifying

known solutions and mapping these to the problem and ways of combining components into the

larger system.

Related work on BN fragments and OOBNs has provided knowledge engineers with methods for

combining components and de®ning smaller, more manageable and pliable, BNs. However,

identi®cation and reuse of patterns of inference have been lacking in past work. We have described

a solution to these problems based on the notion of generally applicable ``building blocks'', called

idioms, which can be combined into objects. These can then in turn be combined into larger BNs,

using simple combination rules and by exploiting recent ideas on OOBNs. This approach, which has

been implemented in the SERENE tool, can be applied in many problem domains.

The idioms described here have been developed to help practitioners solve one of the major

problems encountered when building BNs: that of specifying a sensible graph structure for a BN.

Speci®cally, the types of problem encountered in practice involve di�culties in

. determining sensible edge directions in the BN given that the direction of inference may run

counter to causal direction,

. applying notions of conditional and unconditional dependence to specify dependencies between

nodes,

. building the BN using a ``divide and conquer'' approach to manage complexity and

. reusing experience embodied in previously encountered BN patterns.

In this paper we used an example, drawn from a real BN application, to illustrate how it has been

applied to build large-scale BNs for predicting software safety. In addition to this particular

application the method has been applied to safety assessment projects, as part of an extensive

validation exercise done on the SERENE project, and to other commercial projects in the areas of

software quality and vehicle reliability prediction. This experience has demonstrated that relative

BN novices can build realistic BN topologies using idioms and OOBNs. Moreover, we are con®dent

that the set of idioms we have de®ned is su�cient for building BNs in the software safety/reliability

domain.

We believe our work forms a major contribution to knowledge engineering practitioners building

BN applications. Indeed, we have built working BNs for real applications that we believe are much

larger than any previously developed. For example, the TRACS BN (Fenton et al., 1999) for a

typical vehicle instance contains 350 nodes and over 100 million state combinations.

We expect future advances to come from attempts to overcome the second barrier to the use of

BNs: the problem of eliciting probabilities for large conditional probability tables. Our work to date

has made some headway in solving this problem through the use of statistical distributions and

deterministic functions. By using the equation editor functionality available in the SERENE and

Hugin tools we can automatically generate conditional probability tables. We have also been using

interpolation methods to generate probability tables using quasi-deterministic rules, coupled with

best and worst cases elicited from domain experts. These ideas will be the subject of another paper.

m . n e i l e t a l . 282



Acknowledgements

This work has been funded by the ESPRIT II project SERENE and the EPSRC project IMPRESS.

We would like to thank William Marsh, Frank Jensen, Sven Vestergaard, Asif Makwana, Marc

Bouissou, Gunter Gloe and Alain Rouge for their contributions to the SERENE project. We are

also very grateful to the referees for their insightful comments and helpful suggestions.

References

Agena, 1999, ``Bayesian belief nets'', Agena Ltd. Article at http://www.agena.co.uk.
Boehm, BW, 1988, Tutorial on Software Risk Management IEEE Press.
Booch, G, 1993. Object-Oriented Analysis and Design with Applications Benjamin/Cummings.

Booch, G, Jacobson, I and Rumbaugh, J, 1998, Uni®ed Modeling Language User Guide Addison Wesley
Longman Publishing Co.

Cook, GF and Campbell, DT, 1979, Quasi-Experimentation: Design & Analysis for Field Settings Rand

McNally College Publishing Co.
Courtois, PJ, Fenton, NE, Littlewood, B, Neil, M, Strigini L and Wright, D, 1998, ``Examination of Bayesian

belief network for safety assessment of nuclear computer-based systems'' DeVa ESPRIT Project 20072, 3rd
Year Deliverable, 1998. (Available from the Centre for Software Reliability, City University, Northampton

Square, London EC1V 0HB, UK).
Dijkstra, EW, 1968, ``GOTO considered harmful'' Comm. ACM 11 147±148.
Dijkstra, EW, 1976, A Discipline of Programming Prentice-Hall.

Dillan, WR and Goldstein, M, 1984,Multivariate Analysis: Methods and Applications John E Wiley and Sons.
Fenton, NE and Neil, M, 1999, ``Software metrics: successes, failures and new directions'' Journal of Systems

And Software 47(2±3) 149±157.

Fenton, NE and Neil, M, 1999, ``A critique of software defect prediction research'' IEEE Transactions on
Software Engineering 25(5) 675±689.

Fenton, N, Littlewood, B, Neil, M, Strigini, L, Sutcli�e, A and Wright, D, 1998, ``Assessing dependability of

safety critical systems using diverse evidence'' IEE Proceedings on Software Engineering 145(1) 35±39.
Fenton, NE, Neil, M and Forey, S, 1999, ``TRACS (Transport reliability and calculation system) user

manual'', CSR/TRACS/D12-v1.0, 30 March 1999. (Available from the Centre for Software Reliability,
City University, Northampton Square, London EC1V 0HB, UK).

Gilks, WR, Thomas, A and Spiegelhalter, DJ, 1994, ``A language and program for complex Bayesian
modelling'' Statistician 43 169±78.

Hail®nder, 1999, ``Decision Systems Laboratory Hail®nder project'' http://www.lis.pitt.edu/~dsl/
hailfinder.

Heckerman, D, 1990, ``Probabilistic similarity networks'' Ph.D. thesis. Program in Medical Information
Sciences, Stanford University, Stanford, CA. Report STAN-CS-90-1316.

Heckerman, D and Horvitz, E, 1998, ``Bayesian approach to inferring a user's needs from free-text queries for
assistance'' Gregory F. Cooper and SerafõÂ n Moral (eds) Proceedings of the Fourteenth Conference on
Uncertainty in Arti®cial Intelligence Morgan Kaufmann Publishers Inc.

Hugin, 1999, ``Hugin expert A/S'' on-line brochure at http://www.hugin.dk.
Jackson, M, 1995, ``Principles of program design'' Academia Press.
Jackson, M, 1995, Software Requirements and Speci®cations: A Lexicon of Practice, Principles and Prejudices

Addison-Wesley/ACM Press.

Jensen, FV, 1996, An Introduction to Bayesian Networks UCL Press.
Koller, D and Pfe�er, A, 1997, ``Object-oriented Bayesian networks'' Proceedings of the Thirteenth Annual

Conference on Uncertainty in Arti®cial Intelligence Morgan Kaufman Publishers Inc.

Krause, P, 1998, ``Learning probabilistic networks'' The Knowledge Engineering Review 13(4) 321±351.
Laskey, KB and Mahoney, SM, 1997, ``Network fragments: representing knowledge for constructing

probabilistic models'' Proceedings of Thirteenth Annual Conference on Uncertainty in Arti®cial Intelligence

Morgan Kaufman Publishers Inc.
Lauritzen, SL and Spiegelhalter, DJ, 1988, ``Local computations with probabilities on graphical structures and

their application to expert systems (with discussion)'' Journal of the Royal Statistical Society Series B 50(2)
157±224.

Lewis, NDC, 1998, ``Continuous process improvements using Bayesian belief nets; the lessons to be learnt''
Proceedings of the 24th International Conference on Computers and Industrial Engineering.

Mahoney, SM and Laskey, KB, 1996, ``Network engineering for complex belief networks'' Proceedings of the

Twelfth Annual Conference on Uncertainty in Arti®cial Intelligence Morgan Kaufman Publishers Inc.

Building large-scale Bayesian networks 283



Neil, M and Fenton, NE, 1996, ``Predicting software quality using Bayesian belief networks'' Proceedings of the
21st Annual Software Engineering Workshop.

Neil, M, Littlewood, B and Fenton, N, 1996, ``Applying Bayesian belief networks to systems dependability
assessment'' Proceedings of the Safety Critical Systems Club Symposium Springer-Verlag.

Parnas, DL, 1972, ``On the criteria to be used in decomposing systems into modules'' Communications of the
ACM 15(12) 1052±1058.

Pearl, J, 1986, ``Fusion, propagation, and structuring in belief networks'' Arti®cial Intelligence 29 241±288.

Pearl, J, 1988, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference Morgan
Kaufman.

Pressman, RS, 1992, Software Engineering: A Practitioner's ApproachMcGraw-Hill International.

Ramoni, M and Sebastiani, P, 1999, ``Learning conditional probabilities from incomplete data: an experi-
mental comparison'' Proceedings of the Seventh International Workshop on Arti®cial Intelligence and
Statistics Morgan Kaufman.

Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F and Lorensen, W, 1991,Object-OrientedModeling and Design
Prentice Hall International.

SERENE, 1999a, The SERENE Method Manual Version 1.0 (F), EC Project No. 22187. Project Doc. Number
SERENE/5.3/CSR/3053/R/1. (Available from ERA Technology, Cleeve Road, Leatherhead, Surrey, KT22

7SA, UK).
SERENE, 1999b, The SERENE tool v1.0 available for download from http://www.hugin.dk/serene/
SERENE, 1999c, The SERENE Method Validation Report, EC Project No. 22187, Deliverable Task 5.2.

(Available from ERA Technology, Cleeve Road, Leatherhead, Surrey, KT22 7SA, UK).
Shaw, M and Garland, D, 1996, Software Architecture Prentice Hall.
Sommerville, I, 1992, Software Engineering Addison-Wesley.

Spegelhalter, DJ and Cowell RG, 1992, ``Learning in probabilistic expert systems'' Bayesian Statistics 4 447±
465.

Wright, G and Ayton, P (eds), 1994, Subjective Probability John Wiley and Sons.

m . n e i l e t a l . 284


