A Tensor-based Vector Space Semantics
for Dynamic Syntax

Mehrnoosh Sadrzadeh, Matthew Purver, Ruth Kempson
Queen Mary University of London

In its original form, Dynamic Syntax (DS) provides a strictly incremental formalism relating
word sequences to semantic representations. Conventionally, these are seen as trees decorated with
semantic formulae that are terms in a typed lambda calculus (Kempson et al., 2001, chapter 9):

O(X3,0(X1, X2)) In this book we will take the operation O to be func-

- tion application in a typed lambda calculus, and the

X3 O (X1, X2) objects of the parsing process [...] will be terms in
Xl/\Xg this calculus together with some labels; [...]

This, of course, allows us to give now-familiar analyses of the semantic output of the word-by-word
parsing process, as shown below for the simple sentence “mary likes john™

“mary ...” “ .. likes ...”
?Ty(t) 2Ty (1)
Ty(e), Fo(mary) MTy((e,t))O  Ty(e), Fo(mary) Ty({e, t))
“...john” Tye), & Ty((e (e, 1)), Fohyra.like(z, y))

Ty(t), like(mary, john),
Ty(e), Fo(mary) Ty({e,t)), Fo(Az.like(z, john))

Ty(e), Fo(john) Ty({e, e, t))), Fo(Ayrz.like(x,y))
However, the formalism is in fact considerably more general. To continue the quotation above:

[-..] it s important to keep in mind that the choice of the actual representation lan-
guage is not central to the parsing model developed here. [...| For instance, we may take
X1, X, X3 to be feature structures and the operation O to be unification, or X1, Xs, X3
to be lambda terms and O Application, or X1, Xa, X3 to be labelled categorial expres-
sions and O Application: Modus Ponens, or X1, Xo, X3 to be DRSs and O Merging.

Indeed, in some variants this generality is exploited; for example, Purver et al. (2010) outline a
version in which the formulae are record types in Type Theory with Records (Cooper, 2005); and
Hough and Purver (2012) show how this can confer an extra advantage — the incremental decoration
of the root node, even for partial trees, with a maximally specific formula via type inference. In
this paper, we show how a similar passage can be defined for vector space representations.

Vector space semantic models have a complementary property to DS. Whereas DS is agnostic
to its choice of semantics, vector space models are agnostic to the choice of the syntactic system. In
(Coecke et al., 2010), we show how they provide semantics for sentences based on the grammatical
structures given by Lambek’s pregroup grammars (Lambek, 1997); in (Coecke et al., 2013) we show
how this semantics also works starting from the parse trees of Lambek’s syntactic calculus (Lambek,
1958); Wijnholds (2017) shows how the same semantics can be extended to the Lambek-Grishin
Calculus; and (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013; Baroni et al., 2014) show
how it works for Combinatory Categorial Grammar trees.

This semantics homomorphically maps the concatenation and slashes of categorial grammars
to tensors and their evaluation/application/composition operations to tensor contraction. In DS
terms, structures X, X, X3 are mapped to general higher order tensors, e.g. as follows:

X1 = Tiyigein € Vighe- -V,
Xy = rfin,in+1"'in+k € Va@Vap1 @ Vags
X3 = Tin+kin+k+1-~in+k+m € Vaprk @Vagkt1 @+ Vi



The O operations are mapped to contractions between these tensors, formed as follows:

O(X1, Xo) = iyigein Tiningn - inin
€ %®‘/2®"'®anl®vn+1®"'®Vn+k
O(X370(X17X2)) — Tilizu-inT Tz

Inint1lintk L intkintkt1l Inthktm

€ NVhe -V, 10Vt ® Q@ Viik1 @ Vigrt1 ® - @ Vogktm

In their most general form presented above, these formulae are large and the index notation becomes
difficult to read. In special cases, however, it is often enough to work with spaces of rank around 3.
For instance, the application between a transitive verb and its object is mapped to the following
contraction:
Ty inis iy

This is the contraction between a cube Tj,;,;, in X7 ® X2 ® X3 and a vector T}, in X3, resulting
in a tensor Tj, ;, in X1 ® X», i.e. a matrix.

We suppose Ty(t) represents a sentence space S and Ty(e) a word space W. Given vectors
T.m‘”"y,TgOh” in W and the (cube) tensor Til;’,je in W®S ®W, the tensor semantic trees of the

3
word-by-word parsing process of "mary likes john" become as follows:

“mary ...” “ .. likes ...” “. ..john”
25 75 S5 TR TION &
W WeS,» WaTm W®S WaT™™ WS> T;;’gET,g'O’m
W6 WeSQW 3 Tl WS T WeSeW s Tk

There has been much discussion about whether sentence and word spaces should be the same or
separate. In previous work, we have worked with both cases, i.e. when W # S and when W = §.

DS requirements can now be treated as requirements for tensors of a particular order (e.g.
W, W ® S as above). Alternatively, we can provide an analogue to Hough and Purver (2012)’s
incremental type inference procedure, by interpreting them as picking out an element which is
neutral with regards to composition: the unit vector/tensor of the space they annotate. For the
atomic S and W spaces, this is the (1,1) vector, for the verb phrase space W ® S, it is the unit
matrix ( (1) (1) ), and for the transitive verb space W ® S®@ W, it is the unit cube, which is similar
to the unit matrix, with 1’s on the diagonal and 0’s everywhere else. This provides the desired
compositionality but no new semantic information; that can arrive later as more words are parsed.
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