Utterances as Update | nstructions

Matthew Purver and Raquel Fernandez
Department of Computer Science
King's College, London
Strand, London WC2R 2L S, UK

mat t hew. pur ver @cl . ac. uk,

Abstract

We present an approach to utterance
representation which views utterances
and their sub-constituents as instruc-
tions for contextual update: programs
in a dynamic logic defined with re-
spect to the dialogue gameboard of
(Ginzburg, 1996; Fernandez, 2003b).
This approach allows utterance process-
ing protocols to be represented within
the grammar rather than postulated as
separate dialogue processes: it also al-
lows a view of incremental grounding
and clarification which reflects the in-
sights of dynamic semantics and al-
lows us to treat salience and information
structure in a coherent manner.

1 Introduction

The Information State (IS) approach to dialogue
modelling has received much attention in recent
years (see e.g. (Cooper et al., 1999; Larsson et al.,
2000; Lemon et al., 2001)). This approach allows
modelling of the information available to each par-
ticipant at each stage of the dialogue, with updates
to this information being defined in terms of up-
date protocols postulated as part of one’s general
dialogue capability.

In this paper we discuss an alternative view of
IS update processes: that updates can be defined as
part of the grammatically conveyed content of ut-
terances. We present an approach to utterance rep-
resentation which views utterances and their sub-

raquel @cs. kcl . ac. uk

constituents as instructions for contextual update:
programs in a dynamic logic defined with respect
to the dialogue gameboard of (Ginzburg, 1996;
Fernandez, 2003b). We argue that this approach
has several advantages: transferring the burden of
definition from general protocols to utterance con-
tent allows us to simplify the protocols, transpar-
ently express the update rules as part of our lin-
guistic/grammatical competence, and reflect the
insight of Gricean pragmatics that utterance con-
tent includes the speaker’s intended effect on the
hearer. It also provides us with a framework within
which each sub-utterance can give its own effect
on the context, allowing us to reflect the basic in-
sights of dynamic semantics and define a simple
approach to grounding and clarification.

The rest of the paper is structured as follows:
section 2 describes some theoretical background
underlying our approach. Our proposal is then
presented in section 3, and applied to concrete
phenomena such as grounding and the given/new
distinction. In section 4, we sketch the HPSG-
based grammatical framework we assume. Sec-
tion 5 and section 6 show how our approach can be
extended to integrate update rules and clarification
questions, respectively. We present our conclu-
sions and directions for further work in section 7.

2 Background

2.1 The Dialogue Gameboard

We adopt the theory of dialogue context developed
in the kos framework (Ginzburg, 1996; Ginzburg,
ms). In KOS, conversational interaction involves
updates by each dialogue participant of her own



dialogue gamebord (DGB), a data structure char-
acterised by the following components: a set of
FACTS, which the dialogue participants take as
common ground; a partially ordered set of ques-
tions under discussion QuD; and the LATEST-
MOVE made in the dialogue.

2.2 Grounding and Clarification

Following Ginzburg (1996)’s work, (Ginzburg and
Cooper, 2001; Ginzburg and Cooper, forthcom-
ing) present an analysis of clarification questions
which motivates a highly contextually dependent
representation of utterances. Utterance types are
viewed as lambda-abstracts over a set of contex-
tual parameters, i.e. as functions from context to
content. In HPSG terms, this is achieved by intro-
ducing a new c-PARAMS feature, which encodes
the set of contextual parameters of an utterance,
and is amalgamated over syntactic daughters by a
C-PARAMS Amalgamation Principle. The ground-
ing process for an utterance then involves finding
values for these contextual parameters. Failure to
do this results in the formation of a clarification
guestion.

2.3 The Utterance Processing Protocol

To account for how utterances get inte-
grated into a dialogue participant’s 1S,
Ginzburg and Cooper (2001) formulate a set
of instructions — the Utterance Processing Proto-
col (UPP) — for a dialogue participant to update
her 1S, leading either to grounding or clarification.

1. Add U to PENDI NG
2. Attenmpt to ground U by instantiating
each P in C PARAMS
3. If successful:
3(a). renmove U from PENDI NG
3(b). add content(U) to LATEST-
MOVE;

3(c). If' content (U = assert(P):
push whet her (P) onto QUD

3(d). If content(U) = ask(Q:
push Q onto QUD
4. Else: formclarification question C(P

) and add ask(C(P)) to AGENDA

Listing 1: Utterance Processing Protocol

Listing 1 shows a simple version: utterances are
first added to PENDING for the grounding process,

which consists of attempting to identify the refer-
ents of the elements of C-PARAMS in context. Fail-
ure leads to the formation of a clarification ques-
tion relevant to that parameter. Success leads to
removal from PENDING and addition to LATEST-
MOVE. In the case of assertions, a question rel-
evant to the asserted proposition is also added to
QUD; in the case of ask moves, the asked question
is added to QuD; other moves such as orders may
have their own specific actions specified (although
in the case of seemingly “empty” moves such as
greetings, they may not).

2.4 Formalising the DGB with Dynamic
Logic

In (Fernandez, 2003a; Fernandez, 2003b) the
DGB is formalised using first-order Dynamic
Logic (DL) as it is introduced in (Harel et
al., 2000) and (Goldblatt, 1992). Thus,
Fernandez (2003b) uses the paradigm of DL fa-
miliar from Al approaches to communication
modelling® to formalise not motivational attitudes
but information states and update processes on in-
formation states.

In short, DL is a multi-modal logic with a pos-
sible worlds semantics, which distinguishes be-
tween expressions of two sorts: formulae and pro-
grams. The language of DL is that of first-order
logic together with a set of modal operators: for
each program « there is a box [« ] and a diamond
< a > operator. The set of possible worlds (or
states) in the model is the set of all possible assign-
ments to the variables in the language. Programs
are interpreted as relations between states. Atomic
programs change the values assigned to particular
variables. They can be combined to form com-
plex programs by means of a repertoire of program
constructs, such as sequence ; , choice U, iteration
* and test ?.

Given that in DL transitions between states are
changes in variable assignment, the components of
the DGB are modelled as variables ranging over
different domains, while update operations are
brought about by program executions that involve
changes in variable assignments. See (Fernandez,

For some DL-inspired formalisations within the Beliefs,
Desires and Intentions (BDI) tradition, see e.g. (Cohen and
Levesque, 1990; Sadek, 1991; Moore, 1995).



2003a; Fernandez, 2003b) for the details of the
formalisation, as well as for a basic introduction
to first-order DL.

3 Utterances as Programs

Our approach in this paper is to view utterances
as DL programs: as such, an utterance U denotes

a transition between states s —2» s’. As long
the program contains all relevant instructions for
updating the 1S, the UPP no longer needs to be
specified separately — instead, we merely spec-
ify that an IS s can integrate an utterance U iff
M Es< U > T (i.e. U suceeds for the current
IS).

3.1 About the formalism

Following (Fernandez, 2003a; Fernandez, 2003b),
we use the variable names FACTS, QUD and LM
to represent the three different components of the
DGB. To distinguish between the information that
has been commonly agreed on during the dialogue
(stored in the initially empty FACTS) and the more
general context available to a dialogue participant,
we also include an additional variable BG (back-
ground).

We distinguish between individual variables
ranging over terms, and stack variables ranging
over strings of terms. The atomic programs we
use to manipulate these variables are simple as-
signments (x := t), where z is an individual vari-
able and ¢ is a term; and X.push(z) and X.pop
programs, where X is a stack variable (i.e. a string
of elements) and z stands for the element to be
pushed onto X.

LM is an individual variable ranging over
moves; QUD is a stack variable ranging over
strings of questions. Although we think of BG
and FACTS as sets, we also model them as stack
variables ranging over strings of terms. This al-
lows us to use the pop program to check whether
some term t belongs to FACTS/ BGor not: if ¢ is
in FACTS/ BGand we pop the stack repeatedly, ¢
will show up at some point as the head of the stack.
Thus, we will use the notation t € FACTS/ BG
as an abbreviation for < FACTS/ BGpop* >
head(FACTS/ BG) = t.

|

3.2 Replacing the UPP

The most basic form an utterance program can
take is:

LM:=m

thus assigning a conversational move m to LM
as per part 3(b) of the original UPP (see listing 1
above). The effects of parts 3(c,d) of the UPP are
achieved by more complex programs for questions
and assertions, which are sequences of atomic pro-
grams, as follows:

LM:= ask(q); QUD.push(q)

LM:= assert(p); QUD.push(whether(p))

We assume that these programs are assigned to
utterances by the sentence grammar (we currently
use a HPSG grammar which relates program to
sentence type — see section 4). We can visualise
the effect of the above as a transition between ISs:

LM ask(q)

LM mo
QUD qudy

Figure 1: Utterance as IS transition

In this way, the meaning associated with a par-
ticular move encapsulates the speaker’s intention
(in the case of an ask move, to introduce the asked
question to QUD).

3.3 Grounding

This approach also allows us to formulate
programs which achieve the same effect as
Ginzburg and Cooper (2001)’s application of the
utterance abstract to the context — namely the
identification of referents in the contextual back-
ground. The program associated with an expres-
sion which requires such a referent to exist must
be a program which finds that referent in con-
text (i.e. that succeeds only when the referent is
present). Given our formalism, this will be a pro-
gram (t € BG? (where ¢? is a program which
checks that ¢ holds in the current state).

We therefore propose that referential sub-
utterances (e.g. certain NPs) can contribute such

]/U—/”lQUD q © qudy

|



(t' € BG?

LM mo - — U
QUD qudy
BG  bgo

LM ask(q)
QUD g o qudy
—— BG  bgo

Figure 2: Grounding existing referents

programs to the utterance (again, the details of
this must depend on the grammar — our HPSG ap-
proach uses a general amalgamation principle over
syntactic daughters). A suitable representation for
the sentence ““john snores”, in which a referent for
john must be found, might be the following com-
plex program:

(name(z, john) € BG?;
LM:= assert(snore(z));
QUD.push(whether(snore(x)))

Here we take x to be a variable ranging over a
finite set of people. In this case the test program
(name(z, john) € BG)? would succeed iff there
is a john in BGand z happens to be assigned to
john in the current world.? We are thus narrowing
down the set of possible assignment functions to
those that have this property.

In the same way, common nouns & verbs
(which, following (Purver and Ginzburg, 2003) we
take to refer to a predicate which must be identi-
fied) will require a predicate referent to be identi-
fied in context.

Thus, we take an utterance to be a program
made up of a sequence of tests (that check whether
the reference of particular expressions can be
found in the context) followed by several atomic
programs which update the relevant DGB compo-
nents, as shown in figure 2. An utterance U can
therefore be grounded iff <U > T holds.

3.4 The Given/New Distinction

This approach allows us to distinguish between
given referents (e.g. definites) which must be
found in context as above, and new referents (e.g.
indefinites) which should be added to the context,

2In fact, for proper names and defi nites, it will not be
enough to require that there is a known referent: we need
there to be aunique/most salient referent. The statement of a

suitable test program will depend on one's theory of defi nite-
ness, but we do not see this as affecting our general approach.

by associating indefinites with a program which
introduces a new referent (thus following the dy-
namic semantic tradition of (Heim, 1982; Kamp
and Reyle, 1993; Groenendijk and Stokhof, 1991),
and subsequent DRT-based dialogue theory such
as (Poesio and Traum, 1998)).

(dog(z) € B FACTS)?

FACTS.push(dog(z))

Thus the program associated with a sub-
utterance with a given referent tests for existence
in the current state, while that for a new referent
involves a state change introducing that referent.

This need not be restricted to definites and in-
definites, but can be extended to the given/new
distinction in general, including the information-
structural focus/ground distinction.  Following
(Engdahl et al., 1999; Ginzburg, ms), we express
this distinction by a condition on membership of
QUD: that a particular focus/ground partition pre-
supposes a corresponding question on QUD:

*““the dog””:

“a dog”:

“JOHN snores”:
*“john SNORES™”:

(Az.snore(z) € QUD)?
(AR.R(john) € QUD)?
4  Grammar

We use an HPSG grammar similar to that of
(Ginzburg and Sag, 2000), with the utterance pro-
grams assigned to a new feature C(ONTEXTUAL)-
PROG(RAM); this replaces the C-INDICES feature
of (Ginzburg and Sag, 2000), or the C-PARAMS
feature of (Ginzburg and Cooper, 2001).

By default, this c-PROG feature is built up by
phrases, by linear combination of the programs as-
sociated with its syntactic daughters, using the se-
guence operator as shown in AVM [1].

C-PROG A;...;B
[1] lDTRs <[C-PROG A] ..... [C-PROG B]>

The default program associated with a phrase
is therefore a purely sequenced combination of



the programs contributed by its daughters, but this
default is overwritten for particular phrase types
which by their nature make their own contribu-
tions to the overall program. For example, the
clause type root-clause is specified to add the sub-
program which updates LM

root-clause
2] CONT [illoc-rel]
C-PROG A;LM:=

HEAD-DTR|C-PROG A

while clauses of type declarative (which have
propositions as their semantic content) and inter-
rogative (questions) add the sub-program which
updates QUD:

[declarative
[3] CONT [ proposition]
C-PROG A; QUD.push(whether([1]))

| HEAD-DTR| C-PROG A

[interrogative

[4] CONT [ question]|
C-PROG A; QUD.push([)

| HEAD-DTR| C-PROG A

Phrases which contribute given or new referents
are specified in an entirely parallel way, e.g. for a
definite NP:

definite
CONT  [[parameter]

[5] |c-proc 4;B; (@ e BG FACTS)?
DTRS <[C-PROG A, [c-PROG B]>

The interaction with information structure is ex-
pressed at the top root-clause level:

[root-clause
CONT [@illoc-rel]
[6] CTXT|IS [FOCUS ]
GROUND
C-PROG A; (A21B] € QUD)?; LM:=
HEAD-DTR|C-PROG A

In figure 3 we show an example derivation of a
sentence: the resulting C-PROG program contains
instructions for grounding a referent, for establish-
ing the required information structure, and apply-
ing the UPP.

5 Integrating Update Rules

Typical 1S-based dialogue system behaviour is de-
fined by means of update rules, either stated in
terms of plans and agendas (Larsson et al., 2000;
Larsson, 2002) or in terms of obligations (Poesio
and Traum, 1997; Poesio and Traum, 1998). The
rules can be quite general but must state the ex-
pected behaviour for particular types of move: e.g.
one might specify that a move which asks a ques-
tion causes an obligation (or plan) to respond to
the question to arise, that a greeting leads to an
obligation (or plan) for a reciprocal greeting, and
SO on.

In section 3.2 we have seen that part of the
speaker’s intentions associated with particular
move types (e.g. in the case of an ask move,
to make the question “under discussion”) can be
specified within the grammar. We could actually
go one step further and allow moves to introduce
other update effects usually brought about by up-
date rules, allowing us to replicate the rules of
(Poesio and Traum, 1998) or pragmatic interpre-
tations of (Stone, 2003).

Assuming that dialogue move types are inte-
grated into the grammatical analysis of utterances
(Ginzburg et al., 2001), the need for domain inde-
pendent rules can be removed by specifying suit-
able programs as being directly associated with a
particular move type. For example, an update rule
such as the following (extracted from (Matheson
et al., 2000)), would be replaced by the complex
DL program below:

act ID:2, info_request(DP,Q)
effect push(OBL, address(o(DP),ID))

LM:= info_request(DP, Q);
OBL.push(address(o(DP), Q)

where OBL is a stack of obligations and o(DP)
refers to the other dialogue participant.

A clear motivation for integrating certain con-
textual updates as part of the grammatical analy-
sis of utterances is the existence of moves whose
meaning can only be represented as an update of
the dialogue context. An example of such moves
are acknowledgements. Acknowledgements as
‘okay’ or ‘uh-huh’ are grounding acts with no fur-
ther descriptive content associated. Thus, given



[root-clause T
PHON (JOHN, snor&s)
CONT assert-rel

MSG-ARG

FOCUS
CTXT|IS [GROUND ]
|c-PrROG [} (ADE] € QUD)?; LM:= [I]] |
.- ' —
declarative
PHON (JOHN, snor&s)

proposition
CONT [SOA snore(x)]
CTXT|IS
c-PROG  [5]8} QUD.push(whether(E))]

PHON <JOHN>/\

INDEX
CONT [

cTxT|is [Focus [

c-PROG  [6] (@ € BG FACTS)?]

RESTR mname(z, john)

|

PHON (snores)
CONT
cTxT|is [GROUND [d]

Figure 3: Example derivation: “JOHN snores”™

our formalism, acknowledgements will be as-
signed the following program by the grammar:

LM:= ack; FACTS.push(head (QUD)); QUD.pop

Although one may argue that this approach con-
tributes to a more unmodular theory of dialogue,
we think that one of the advantages of the frame-
work we present here is that it offers a means of
specifying the contextual effect of utterances in a
general fashion, from sub-utterances to dialogue
acts.

6 Clarification

The approach to grounding in section 3.3 is sim-
plistic in that it does not consider the possibility
of clarification of a referent that cannot be identi-
fied: the program U will simply fail in such cases.
We can take this possibility into account by mod-
ifying the programs associated with sub-utterance
referents. Such programs, rather than being simple
instructions to find a referent, now become instruc-
tions to find a referent or determine it via clarifi-
cation if one cannot be found. The program asso-

ciated with ““john”” will therefore take the form:

while(=(name(z, john) € BE FACTS),
clarify(5))

where S is the sign® corresponding to the
sub-utterance.  Here, while(¢, ) abbreviates
(¢7; )*; —¢?, and clarify(¢) is a program which
governs generation of a clarification question rel-
evant to a term ¢, together with interpretation of
any answer given. Its form therefore depends on
one’s overall system philosophy; for a plan-based
approach, it might take the form:

AGENDA.push(ask(CQ(t))); ar

where CQ(t) is a clarification question relevant
to the sign ¢, and a is the program which gov-
erns the generation & production of the next turn
together with the interpretation of its response.

Note that this sub-program will only suc-
ceed once the required information is present in

3As (Ginzburg and Cooper, 2001) point out, clarifi cation
guestions must take into account many properties (including
phonology, syntax etc.): we therefore assume al sign infor-
mation is required.



FACTS, allowing the overall utterance program to
continue (eventually e.g. updating QUD). Note also
that this may result in LMnow being set to the ini-
tial move (rather than the latest move in any clarifi-
cation sequence) — but this is the behaviour we de-
sire, as it is this move that is now being responded
to.*

We can further modify this to take account of
the possibility of accommodation of the referent
(adding it to the common ground without clarifi-
cation):

while(=(name(z, john) € BEG FACTS),
clarify(S) U FACTS.push(name(z, john)))

Note that this treatment need not be confined to
programs associated with sub-utterances that re-
quire given referents to be identified (e.g. names
and definites), but can be used in general to ac-
count for clarification caused by the failure of any
program (including those for indefinites, focus/-
ground partition, and the overall move made) in
a uniform way.

7 Summary

7.1 Conclusions

e This approach reduces the amount of our di-
alogue competence which is specified in pro-
cessing protocols / update rules, and instead
specifies it as part of the grammar. Utterance
processing now merely consists of applying
the state changes specified by the utterance
itself.

e The resulting representation expresses the
Gricean intuition that interpretation depends
upon recognising the speaker’s intention: ut-
terance meaning includes the intended effect
on the hearer (e.g. that they add the move to
their 1S, and make the desired question “un-
der discussion”).

e The approach also allows sub-utterances to
specify their effect on the context, allowing
us to express the given/new distinction neatly,
and define a process for grounding & clarifi-
cation.

“41f one has a different view of the role of LM a program
can be constructed that avoids this.

e The representation therefore allows all imme-
diate contextual effects of an utterance to be
specified on the same level: from the update
effect of NPs familiar from dynamic seman-
tics, to the update effect of utterances familiar
from 1S-based theories of dialogue.

7.2 Further Work

The work presented in this paper is an initial pro-
posal for the representation of utterances within a
dialogue grammar. In order to investigate it fur-
ther, we plan:

e A thorough study of dialogue update rules
across systems/approaches to determine the
level of domain-dependence and thus the ex-
tent to which specification in the grammar is
desirable;

e Extension to other dialogue phenomena such
as revision;

e Extension of our HPSG grammar fragment
and implementation within a prototype dia-
logue system.

7.3 Acknowledgements

The authors would like to thank Jonathan
Ginzburg, Ulle Endriss and the anonymous
DiaBruck reviewers for several helpful com-
ments. They are supported by EPSRC grant
GR/R04942/01 and ESRC grant RES-000-23-
0065, respectively.

References

Philip Cohen and Hector Levesque. 1990. Rational in-
teraction as the basis for communication. In P. Co-
hen, J. Morgana, and M. Pollack, editors, Intentions
in Communication. MIT Press.

Robin Cooper, Staffan Larsson, Massimo Poesio,
David Traum, and Colin Matheson. 1999. Coding
instructional dialogue for information states. In Task
Oriented Instructional Dialogue (TRINDI): Deliver-
able 1.1. University of Gothenburg.

Elisabet Engdahl, Staffan Larsson, and Stina Ericsson.
1999. Focus-ground articulation and parallelism in
a dynamic model of dialogue. In Task Oriented
Instructional Dialogue (TRINDI): Deliverable 4.1.
University of Gothenburg.



Raquel Fern“andez. 2003a. A dynamic logic formalisa-
tion of inquiry-oriented dialogues. In Proceedings
of the 6th CLUK Colloquium, pages 17-24, Edin-
burgh. CLUK.

Raquel Fern“andez. 2003b. A dynamic logic formal-
isation of the dialogue gameboard. In Proceed-
ings of the Student Research Workshop, EACL 2003,
pages 17—-24, Budapest. Association for Computa-
tional Linguistics.

Jonathan Ginzburg and Robin Cooper. 2001. Resolv-
ing ellipsis in clarification. In Proceedings of the
39th Meeting of the ACL, pages 236—243. Associa-
tion for Computational Linguistics, July.

Jonathan Ginzburg and Robin Cooper. forthcoming.
Clarification, ellipsis, and the nature of contextual
updates. Linguistics and Philosophy.

Jonathan Ginzburg and Ivan Sag. 2000. Interrogative
Investigations: the Form, Meaning and Use of En-
glish Interrogatives. Number 123 in CSLI Lecture
Notes. CSLI Publications.

Jonathan Ginzburg, Ivan A. Sag, and Matthew Purver.
2001. Integrating conversational move types in the
grammar of conversation. In P. Kiihnlein, H. Rieser,
and H. Zeevat, editors, Proceedings of the Fifth
Workshop on Formal Semantics and Pragmatics of
Dialogue (BI-DIALOG 2001), pages 45-56.

Jonathan Ginzburg. 1996. Interrogatives: Questions,
facts and dialogue. In S. Lappin, editor, The Hand-
book of Contemporary Semantic Theory, pages 385—
422. Blackwell.

Jonathan Ginzburg. ms. A semantics for in-

teraction in dialogue.  Forthcoming for CSLI

Publications. Draft chapters available from:

http://www.dcs.kcl.ac.uk/staff/ginzburg.

Robert Goldblatt. 1992. Logics of Time and Compu-
tation. Number 7 in Lecture Notes. CSLI Publica-
tions.

Jeroen Groenendijk and Martin Stokhof. 1991. Dy-
namic predicate logic. Linguistics and Philosophy,
14(1):39-100.

David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000.
Dynamic Logic. Foundations of Computing Series.
The MIT Press.

Irene Heim. 1982. The Semantics of Definite and In-
definite Noun Phrases. Ph.D. thesis, University of
Massachusetts at Amherst.

Hans Kamp and Uwe Reyle. 1993. From Discourse To
Logic. Kluwer Academic Publishers.

Staffan Larsson, Peter Ljunglof, Robin Cooper, Elisa-
bet Engdahl, and Stina Ericsson. 2000. GoDiS -
an accommodating dialogue system. In Proceedings
of ANLP/NAACL-2000 Workshop on Conversational
Systems.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, Goteborg University.

Oliver Lemon, Anne Bracy, Alexander Gruenstein, and
Stanley Peters. 2001. Information states in a multi-
modal dialogue system for human-robot conversa-
tion. In P. Kiihnlein, H. Rieser, and H. Zeevat, ed-
itors, Proceedings of the Fifth Workshop on Formal
Semantics and Pragmatics of Dialogue, pages 57—
67. BI-DIALOG.

Colin Matheson, Massimo Poesio, and David Traum.
2000. Modeling grounding and discourse obliga-
tions using update rules. In Proceedings of the First
Annual Meeting of the North American Chapter of
the ACL, Seattle, April.

Robert C. Moore. 1995. Logic and Representation.
Lecture Notes. CSLI Publications.

Massimo Poesio and David Traum. 1997. Conversa-
tional actions and discourse situations. Computa-
tional Intelligence, 13(3).

Massimo Poesio and David Traum. 1998. Towards
an axiomatization of dialogue acts. In J. Hulstijn
and A. Nijholt, editors, Proceedings of the Twente
Workshop on the Formal Semantics and Pragmatics
of Dialogues, pages 207—222, Enschede, May.

Matthew Purver and Jonathan Ginzburg. 2003. Clar-
ifying nominal semantics in HPSG. In Proceed-
ings of the 10th International Conference on Head-
Driven Phrase Structure Grammar (HPSG-03), East
Lansing, Michigan, July. Michigan State University.

M. D. Sadek. 1991. Dialogue acts as rational plans. In
Proceedings of the ESCA/ETR Workshop on Multi-
modal Dialogue.

Matthew Stone. 2003. Linguistic representation and
gricean inference. In IWCS-5: Proceedings of the
Fifth International Workshop on Computational Se-
mantics, pages 5—21, University of Tilburg, January.



