
Processing Self-Repairs in an Incremental Type-TheoreticDialogue System∗

Julian Hough Matthew Purver
Interaction, Media and Communication group

School of Electronic Engineering and Computer Science
Queen Mary University of London

{julian.hough, matthew.purver}@eecs.qmul.ac.uk

Abstract

We present a novel incremental approach to
modelling self-repair phenomena in dialogue,
using the grammar and parsing mechanism of
Dynamic Syntax (DS) to construct Type The-
ory with Records (TTR) record type represen-
tations incrementally in both parsing and gen-
eration. We demonstrate how a DS-TTR hy-
brid implementation when integrated into an
incremental dialogue system can be exploited
to account for the semantic processing of self-
repair phenomena in a unified way and in line
with psycholinguistic evidence.

1 Introduction

Self-repairs are too pervasive in human dialogue to
be considered exceptional and they should be inte-
gral to any dialogue model, an insight from early
Conversational Analysis work which revealed them
to be systematic (Schegloff et al., 1977). The fol-
lowing are typical of the within-turn (first position),
self-initiated type of self-repair often found in natu-
ral dialogue:

(1) Our situation is just[a little bit,+ kind of the
opposite] of that (Switchboard)

(2) [the interview was{. . .} + it was] alright
(Clark, 1996, p.266)

(3) John goes to Paris[{uhh}+ from London]
(constructed example)

∗This work was partly supported by the RISER project EP-
SRC reference EP-J010383-1 and an EPSRC Doctoral Training
Account scholarship for the first author. Thanks to the Semdial
reviewers for their helpful comments.

For terminological and annotation purposes, fol-
lowing the disfluency-tagged Switchboard corpus,
first position self-repairs will be discussed with ref-
erence to a division into areparandum(the speech
that is repaired, up to the repair point+), a possi-
bly null interregnum(the filler words or pause be-
tween{}) and the followingrepair (the strings after
the repair point+ up to the closing square bracket).
We also considerextensions- also called ‘covert’
(Levelt, 1989) or ‘forward-looking’ (Ginzburg et al.,
2007) repairs- such as (3) which may not in fact
function to alter the previous part of the utterance,
but to extend it.

The formal model we describe here attempts to
address two principal aspects of self-repair phe-
nomena: firstly, in terms of cognitive processing,
the semantic parsing and generation of self-repaired
utterances is just as straightforward as for fluent
utterances in dialogue (and in fact, in some do-
mains semantic processing is aided (Brennan and
Schober, 2001)); secondly, that the repaired mate-
rial (reparandum) can be referred to in context, as in
(2) above where the reparandum still needs to be ac-
cessed for the anaphoric use of ‘it’ to succeed, “leav-
ing the incriminated material with a special status,
but within the discourse context” (Ginzburg et al.,
2007, p. 59).

2 Related work

Work on the processing of self-repair phenomena
has not generally focused on the semantics and prag-
matics of ongoing dialogue. Parsing approaches
have tended to implement aparse→string-edit→re-
parsepipeline, which which takes disfluent inputs



and returns ‘cleaned-up’ grammatical strings rela-
tive to a given grammar- this was done with a TAG
transducer in the case of (Johnson and Charniak,
2004). In terms of psychological validity for dia-
logue the approach is questionable, as parts of an
utterance cannot be removed from the hearer’s per-
ceptual record, discounting the possibility of prop-
erly processing reparanda, as in example (2) above.
McKelvie (1998) introduces a more explicit disflu-
ency rule-based syntactic account, which instead of
expunging ‘junk’ material, exploitsabortedsyntac-
tic categories and provides optional rules for produc-
ing cleaned-up parses. However, again under the as-
sumption that self-repair operates as a module out-
side the principal grammar, no method for obtaining
the semantics of a self-repair is suggested.

Self-repair has received more attention from the
generation (NLG) community, particularly as incre-
mental NLG models were initially motivated by psy-
cholinguistics, most notably Levelt (1989)’s influ-
ential modularization of speech production into dis-
tinct conceptualization, formulation and articula-
tion phases. Following this, De Smedt showed how
developing the syntactic component of the formu-
lation phase in detail could give models of lexical
selection and memory limitations (De Smedt, 1991)
which could trigger syntactic revision and Neumann
(1998) introduced reversible incremental parsing-
generation processes to implement ambiguity detec-
tion and paraphrasing corrections. In conceptual-
ization, Guhe (2007) modelled online modifications
to pre-verbal messages that cause self-repair surface
forms to be realized.

Albeit less psychologically motivated, Buß and
Schlangen (2011) and Skantze and Hjalmarsson
(2010) introduce self-repair generation strategies in
incremental dialogue systems. Both systems make
use of the Incremental Unit (IU) dialogue framework
model (Schlangen and Skantze, 2009), which allows
online revision of input and outputs between mod-
ules. Skantze and Hjalmarsson (2010) use string-
based speech plans which may change dynamically
during interaction with a user, allowing for changing
ASR hypotheses, which could lead to the genera-
tion of a limited set of ‘covert’ (non-replacement ex-
tensions) and ‘overt’ self-repairs. The interactional
benefits of the approach are clear, however the lack
of incremental semantics and domain-general gram-

mar makes both scalability to more complex do-
mains and integration with a general parsing module
difficult.

In terms of the dialogue semantics of self-repair,
Ginzburg and colleagues (Ginzburg et al., 2007;
Ginzburg, 2012) working within the KoS framework
(Ginzburg, 2012) with Dialogue Gameboard (DGB)
update mechanisms at its core, attempt to unify an
account of self-repair and other-initiated repair by
drawing the parallels between self-initiated editing
phrases (interregna) and clarification requests (CRs)
as cues for repair. They make an adjustment to KoS
in allowing CRs and editing signals and their follow-
ing corrections to occur mid-utterance, accommo-
dating incrementality by allowing the DGB word-
by-word updates to its PENDING component. They
also suggest that Type Theory with Records (TTR)
could be instrumental in enabling appropriate types
for word-by-word semantic updates in their future
work. However, while this provides a general di-
alogue model, the relationship of these updates to
incremental parsing and generation processes is not
made explicit.

3 Criteria for a unified account

The parsing, generation and dialogue semantics im-
plementations of self-repairs have been slightly or-
thogonal, so a grammar which can provide a suitable
semantic representation to capture the phenomena
in both modalities within a dialogue context is lack-
ing. We suggest that two requirements of a grammar
to remedy this arestrong incremental interpretation
and incremental representation(Milward, 1991).
Strong incremental interpretation is the ability to
make available the maximal amount of information
possible from an unfinished utterance as it is being
processed, particularly semantic dependencies (e.g.
a representation such asλx.like′(john′, x) should
be available after processing “John likes”). Incre-
mental representation, on the other hand, is defined
as a representation being available for each sub-
string of an utterance, but not necessarily including
the dependencies (e.g. having a representation such
asjohn′ attributed to “John” andλy.λx.like′(y, x)
attributed to “likes” after processing “John likes”).
These representations should become available im-
mediately to connected modules, therefore requiring



seamless integration with other dialogue semantics1.
Furthermore a record ofprocessing contextis re-

quired to be sufficiently detailed, and suitably struc-
tured, so that parsing, generation and dialogue man-
agement algorithms can access the material in the
reparandum straightforwardly, as shown by exam-
ple (2). This context must extend from the phonetic
level to the conceptual level: Brennan and Schober
(2001)’s experiments demonstrated self-repair can
speed up semantic processing (or at least object ref-
erence) in a small visual domain of shape selec-
tion, where an incorrect object being partly vocal-
ized and then repaired in the instructions (e.g. “the
yell-purple square”) yielded quicker response times
from the onset of the target (“purple”) than in the
case of the equivalent fluent instructions (e.g. “the
purple square”). This example will be addressed in
section 6.

Given these requirements and the lacunae from
previous work, in the remainder of the paper we
present a type-theoretic incremental model of pars-
ing, generation and context that addresses them,
showing how a suitable grammar formalism and se-
mantic representation (section 4) integrated into an
incremental dialogue system (section 5) can account
for parsing (section 6) and generating (section 7)
self-repairs in a psycholinguistically plausible way.

4 Dynamic Syntax and TTR

Dynamic Syntax (DS) (Kempson et al., 2001) is an
action-based and semantically oriented incremental
grammar framework that defines grammaticality as
parsability. The DS lexicon consists oflexical ac-
tionskeyed to words, and also a set of globally appli-
cablecomputational actions, both of which consti-
tute packages of monotonic update operations on se-
mantic trees, and take the form of IF-THEN action-
like structures. For example, in DS notation, the lex-
ical action corresponding to the wordjohn has the
preconditions and update operations in example (4):
if the pointer object (♦), which indicates the node
being checked on the tree, is currently positioned at
a node that satisfies the properties of the precondi-
tion then all the actions in the post-condition can be

1Recently, (Peldszus et al., 2012) show how incrementally
integrating incremental syntactic and pragmatic processing can
improve an interpreter module’s performance.

completed, these being simple monotonic tree oper-
ations.

(4)

john:
IF ?Ty(e)
THEN put(Ty(e))

put(
[

x=john : e
]

)
ELSE abort

(5)
“John arrived”

7−→

♦, T y(t),

[

x=john : e

p=arrive(x) : t

]

Ty(e),
[

x =john : e
]

Ty(e → t),
λr :

[

x1 : e
]

[

x=r.x1 : e

p=arrive(x) : t

]

In DS, the trees upon which actions operate rep-
resent terms in the typed lambda calculus, with
mother-daughter node relations corresponding to se-
mantic predicate-argument structure, with no inde-
pendent layer of syntax represented. Tree nodes are
typed, and can be either type-complete (e.g.Ty(e))
and decorated with a semantic formula, or have a
requirement for a type (e.g.?Ty(e)). As can be
seen in (5) above, recent DS variants (Purver et al.,
2010) incorporate Type Theory with Records (TTR)
(Cooper, 2005), with TTRrecord typesdecorating
tree nodes, rather than simple atomic formulae.

Following Cooper (2005), each field in a record
type is of the form

[

l : T
]

, containing a unique
label l in the record type and a typeT . Fields
can bemanifest, i.e. have a singleton type such
as

[

l : Ta

]

whereTa is the type of which only
a is a member; here, we write this using the syn-
tactic sugar

[

l=a : T
]

. Fields can bedepen-
dent on fields preceding them (i.e. higher up in
the graphical representation), e.g. the predicate type
[

p=like(x,y) : t
]

, wherex andy are labels in pre-
ceding fields. DS node semantic formulae are now
taken to be record types, with the type of the final
(i.e. lowest down) field corresponding to theTy()
node type. Functions from record type to record type
in the variant of TTR we use here employ paths, and
are of the formλr :

[

l1 : T1
] [

l2=r.l1 : T1
]

, an
example being the formula at the typeTy(e → t)
node in tree (5) above, giving DS-TTR the required
functional application capability: functor node func-
tions are applied to their sister argument node’s



formula, with the resultingβ-reduced record type
added to their mother node.2

In DS parsing, beginning with an axiom tree with
a single node of requirement type?Ty(t), parsing
intersperses the testing and application of both lex-
ical actions triggered by input words such as 4 and
the execution of permissible (Kleene* iterated) se-
quences of computational actions, with their up-
dates monotonically constructing the tree. Success-
ful parses are sequences of action applications that
lead to a tree which is complete (i.e. has no outstand-
ing requirements on any node, and has typeTy(t) at
its root node as in (5)). The DS notion of incremen-
tality is two-fold, in that action sequences monoton-
ically extend the trees, and that these sequences are
maximally applied on a word-by-word basis.

Here we modify the traditional DS parsing and
generation model by allowing the compilation of
TTR formulae forpartial trees in addition to com-
plete ones. This is achieved through a simple tree-
compiling algorithm which decorates terminal nodes
with record types containing underspecified vari-
ables of the appropriate type, then applies functional
application between sister nodes to compile aβ-
reduced record type at their mother node, continu-
ing in bottom-up fashion until a record type is com-
piled at the root (see (Hough, 2011) for details). The
modification means the DS-TTR model now meets
the criteria of strong incremental interpretation, as
maximal record types represent all possible depen-
dencies made available as each word is processed.

4.1 DS-TTR generation as parsing

As Purver and Kempson (2004) demonstrate, an in-
cremental DS model of surface realization can be
neatly defined in terms of the DS parsing process
and asubsumption checkagainst agoal tree. The
goal tree input is a complete and fully specified DS
tree such as (5), and the generation of each word
consists of attempting to parse each word in the lex-
icon to extend the trees under construction in the
parse state. Partial trees are checked for suitabil-
ity via goal tree subsumption, with unsuitable trees

2For functional application and record type extension (con-
catenation), which is required in DS grammar for merging the
formulae at the top of LINKed tree structures,relabellingis car-
ried out when necessary in the record types in the way described
by Cooper (2005) and Fernández (2006).

and their parse paths removed from the generator
state. The DS generation process is word-by-word
incremental with maximal tree representations con-
tinually available, and it effectively combines lexical
selection and linearization into a single action due
to the word-by-word iteration through the lexicon.
Also, self-monitoring is inherently part of the gen-
eration process, as each word generated is parsed.
However, this model requires fully structuredtrees
as input, problematic for a dialogue manager.

Here, though, with incremental representations
now available through the tree compiling mecha-
nism as described above, a modification can be made
by replacing the goal tree with aTTR goal concept,
which can take the form of a record type such as:

(6)









x1=Paris : e

x=john : e

p1=to(x1) : t

p=go(x) : t









Consequently, the tree subsumption check in the
original DS generation model can now be charac-
terized as a TTR subtype relation check between the
goal tree and the compiled TTR formulae of the trees
in the parse state. A definition for the check, adapted
from Fernández (2006, p.96), is defined in (7).

(7) Subtype relation check:
For record typesp1 andp2, p1 ⊑ p2 holds just
in case for each field

[

l : T2
]

in p2 there is
a field

[

l : T1
]

in p1 such thatT1 ⊑ T2,
i.e. iff any object of typeT1 is also of type
T2. This relation is reflexive and transitive.

The advantage of this move is that for the logical
input to generation a goal tree no longer needs to
be constructed from the grammar’s actions, so the
dialogue management module need not have full
knowledge of the DS parsing mechanism and lexi-
con. An example successful generation path can be
seen in Figure 1,3 showing how the maximal TTR
record type for each tree is continually available.

3The incremental generation of “john arrives” succeeds as
the successful lexical action applications at transitions1 7→ 2

and 3 7→ 4 are interspersed with applicable computational ac-

tion sequences at transitions 07→ 1 and 2 7→ 3 , at each
stage passing the subtype relation check with the goal (i.e.the
goal is a subtype of the top node’s compiled record type), until
arriving at a tree thattype matchesin 4 .



0

[

p : t
]

♦, ?Ty(t)

7→

1

?Ty(t),

[

x : e

p =U(x) : t

]

?Ty(e),♦
[

x : e
]

?Ty(e → t)
λr :

[

x1 : e
]

[

x=r.x1 : e

p=U(x) : t

]

‘John’
7→

2

?Ty(t),♦

[

x=john : e

p=U(x) : t

]

Ty(e),
[

x=john : e
]

?Ty(e → t),
λr :

[

x1 : e
]

[

x=r.x1 : e

p=U(x) : t

]

7→

3

?Ty(t),

[

x=john : e

p =U(x) : t

]

Ty(e),
[

x=john : e
]

?Ty(e → t),♦
λr :

[

x1 : e
]

[

x=r.x1 : e

p=U(x) : t

]

‘arrives’
7→

4
(TYPE MATCH)

♦, T y(t),

[

x=john : e

p=arrive(x) : t

]

Ty(e),
[

x=john : e
]

Ty(e → t),
λr :

[

x1 : e
]

[

x=r.x1 : e

p=arrive(x) : t

]

Goal =
[

x=john : e

p=arrive(x) : t

]

Figure 1: Successful generation path in DS-TTR

Another efficiency advantage is that subtype
checking can also reduce the computational com-
plexity of lexicalisation through pre-verbal lexi-
cal action selection, removing the need to iterate
through the entire lexicon on a word-by-word basis.
A sublexiconSubLex can be created when a goal
conceptGoalTTR is inputted to the generator by
searching the lexicon to select lexical actions whose
TTR record type is a valid supertype ofGoalTTR.

5 Incremental DS-TTR parsing and
generation in DyLan

In order to meet the criteria of a continuously up-
dating contextual record, we implement DS-TTR
parsing and generation mechanisms in the prototype
DyLan dialogue system4 within Jindigo (Skantze
and Hjalmarsson, 2010), a Java-based implementa-
tion of the incremental unit (IU) dialogue system
framework (Schlangen and Skantze, 2009). As per
Schlangen and Skantze (2009)’s model, there are in-
put and output IUs to each module, which can be
added as edges between vertices in module buffer
graphs and becomecommitted should the appro-
priate conditions be fulfilled, a notion which be-
comes important in light of hypothesis change and

4Available from http://dylan.sourceforge.net/

repair situations. Dependency relations between dif-
ferent graphs within and between modules can be
specified bygroundedInlinks (see (Schlangen and
Skantze, 2009) for details).

The DyLan interpreter module (Purver et al.,
2011) uses Sato (2011)’s insight that the context of
DS parsing can be characterized in terms of a Di-
rected Acyclic Graph (DAG) with trees for nodes
and DS actions for edges. The module’s state is
characterized by three linked graphs:

• input: a time-linear word graph posted by the
ASR module, consisting of word hypothesis
edge IUs between verticesWn

• processing: the internal DS parsing DAG,
which adds parse state edge IUs between ver-
tices Sn groundedIn the corresponding word
hypothesis edge IU

• output: a concept graph consisting of domain
concept IUs (TTR record types) constructed
between verticesCn, groundedIn the corre-
sponding path of edges in the DS parsing DAG

In the generation module, the architecture is the
inverse of interpretation given the input of TTR goal
concepts:

• input: the concept graph has goal concept
IU edges (TTR record types) between vertices
GCn posted by the dialogue manager



Figure 2: Incremental DS-TTR parsing of a self-repair. Revoked edges indicating failed search paths are
dotted. Inter-graphgroundedInlinks go from top to bottom.

• processing:the DS parsing graph (shared with
the interpreter module’s graph) is incremen-
tally constructed word-by-word by parsing the
lexical actions in the sublexicon and subtype
checking the result against the current goal con-
cept (see section 4.1)

• output: the word graph’s edges areadded
to the output buffer during word-by-word
generation, andcommitted when they are
groundedInDS parsing graph paths that form
part of a valid generation pathtype matched
with the goal concept (as in Figure 1).

6 Parsing self-repairs

Interpretation inDyLan follows evidence that dia-
logue agents parse self-repairs efficiently and that
repaired material is given special status but not
removed from the discourse context. To sim-
ulate Brennan and Schober (2001)’s experimen-
tal findings described in section 3, we demon-
strate a self-repair parse in Figure 2 using a do-
main of three domain concepts,yellow square,
purple square and orange square, each
with a distinct record type. When “yell-” is pro-
cessed, the word hypothesizer adds the edge ‘yel-
low’, which in turn is parsed, returning a TTR record
type. Search is initiated for domain concepts in a

subtype relation to it, in this case finding a valid
subtype in the conceptyellow square- when
matched it is moved from the domain concepts to the
concept graph’s active edge. The following failure to
interpret ‘purple’ forces a repair under the definition
in 8 below:

(8) Repair IF from parsing wordW there is no
edgeSEn able to be constructed from vertex
Sn (no parse) or if no domain concept
hypothesis can be made through subtype
relation checking,repair: parse wordW
from vertexSn−1. Should that parse be
successfuladd a new edge to the top path,
without removing anycommitted edges
beginning atSn−1.

This does not remove the initially matched con-
cept IU at edgeC0-C1, but forces another match-
ing process to add a successor edge. The con-
sequent subtype-checking operation is then lim-
ited to just the conceptspurple square and
orange square, finding a type match in the for-
mer. While this trivially reduces the subtype check-
ing iteration process here for illustrative purposes,
with a bigger domain this could remove many con-
cepts (i.e. all of those that are subtypes of the in-
criminated parse path’s current record type).



Figure 3: Incremental DS-TTR generation of a self-repair upon goal concept change. Type-matched record
types are double-circled nodes. Inter-graphgroundedInlinks go from top to bottom.

This strategy will also allow the parsing of (2)
“the interview was.. it was alright”, with the cor-
rect reference resolution of ‘it’: any committed pre-
ceding edge on the word hypothesis graph can be ac-
cessed (i.e. any word/partial word heard in the user’s
speech stream), as can its correspondinggroundedIn
DS-TTR parse graph edge IU- this way the TTR
formula for ‘the interview’ is accessible, and DS
anaphora mechanisms using context may run as nor-
mal.

While the rule in (8) will only allow the parsing
of replacement type self-repairs, in our prototype
dialogue system this can be triggered not only by
syntactic disfluency but also by pragmatic infelicity.
For example, if the user were to say “I pick the yel-
low square or rather the blue square”, which may
be parsable in the DS grammar without backtrack-
ing, the mechanism will still work in the same way
because in our micro-domain there is no available
concept that represents the user selecting both the
yellow and blue squares simultaneously in one turn.
Work is also under way to lexicalise editing signals
in terms of their effect on DS parsing context.

7 Generating self-repairs

In DyLan’s generation module, whose processing
is driven by parsing as described in section 4.1, the
parsingrepair function defined in (8) will operate
if there is no resulting word edge output after a gen-
eration cycle to produce the next word. This will be

triggered by a change in goal concept during gener-
ation. As per parsing, in repair the generation algo-
rithm continues backtracking by one vertex at a time
in an attempt to extend the DS DAG until successful,
as can be seen in Figure 3 with the successful back-
track and parse of ‘Paris’ resulting in successful sub-
sumption to the new goal concept. The time-linear
word graph continues to extend but with the repair’s
edgesgroundedIndifferent paths of the parse DAG
to those which ground the reparandum5. Our proto-
col is consistent with Shriberg and Stolcke (1998)’s
empirical observation that the probability of retrac-
ing N words back in an utterance is more likely than
retracing from N+1 words back, making the repair
as local as possible.

Another type of self-repair,extension, such as ex-
ample (3) above, is dealt with straightforwardly in
our generation module. For these covert repairs, the
incoming goal concept must be a subtype of the one
it replaces, and so the DS parser can induce mono-
tonic growth of the matrix tree through LINK ad-
junction (Kempson et al., 2001), resulting in sub-
type extension of the root TTR record type. Thus, a
change in goal concept during generation will not
always put demands on the system to backtrack,
such as in generating the fragment after the pause

5The previously committed word graph edge for ‘London’
is not revoked nor is itsgroundedInparse graph edge, follow-
ing our parsing algorithm and the principle that has been in the
public record and hence should still be accessible.



in “John goes to Paris. . . from London”. It is only
at a semantics-syntax mismatch, where the revised
goal TTR record type does not correspond to a per-
missible extension of a DS tree in the parsing DAG
where overt repair will occur. In contrast to Skantze
and Hjalmarsson (2010)’s string-basedspeech plan
comparison approach, there is no need to regener-
ate a fully-formed string from a revised goal concept
and compare it with the string generated thus far. Far
from a phonetic form deletion account, self-repair
in DyLan is driven by attempting to extend existing
parse paths to construct the new target record type,
retainingall the semantic representation and the pro-
cedural context of actions already built up in the
generation process to avoid the computational de-
mand of constructing semantic representations from
afresh.

8 Conclusion

We have presented a framework for parsing and gen-
erating word-by-word incrementally using a hybrid
grammar of Dynamic Syntax and Type Theory with
Records (DS-TTR) which has been implemented in
the DyLan dialogue system, utilising the mecha-
nisms of the Incremental Unit framework.DyLan
provides a preliminary model of the parsing and gen-
eration of self-repair in line with psycholinguistic
evidence of preference for locality and the availabil-
ity of access to the semantics of repaired material.

In terms of development, while our model cur-
rently covers replacement type repairs and exten-
sions, there is potential for expansion to insertion
type repairs such as “Peter went swimming with Su-
san .. or rather surfing, yesterday”6. The use of a
DS-TTR parsing context DAG constructed by the ut-
terance so far could again be used to resolve these re-
pairs, in this case by reusing preceding action edges
in the spirit of the recent DS account of verb phrase
ellipsis (Kempson et al., 2011). Other future work
planned includes investigating the lexical semantic
structure that TTR record types may offer for mod-
elling type dependencies between reparanda and re-
pairs.

6Many thanks to the anonymous reviewer who provided the
example and highlighted the importance of this.

References

S.E. Brennan and M.F. Schober. 2001. How listeners
compensate for disfluencies in spontaneous speech* 1.
Journal of Memory and Language, 44(2):274–296.

O. Buß and D. Schlangen. 2011. Dium–an incremental
dialogue manager that can produce self-corrections. In
Proceedings of the 15th Workshop on the Semantics
and Pragmatics of Dialogue (SEMDIAL), pages 47–
54, Los Angeles, California, September.

Herbert H. Clark. 1996.Using Language. Cambridge
University Press.

Robin Cooper. 2005. Records and record types in se-
mantic theory. Journal of Logic and Computation,
15(2):99–112.

Koenraad De Smedt. 1991. Revisions during generation
using non-destructive unification. InProceedings of
the Third European Workshop on Natural Language
Generation, pages 63–70.

Raquel Fernández. 2006.Non-Sentential Utterances in
Dialogue: Classification, Resolution and Use. Ph.D.
thesis, King’s College London, University of London.

Jonathan Ginzburg, Raquel Fernández, and David
Schlangen. 2007. Unifying self- and other-repair. In
Proceedings of the 11th Workshop on the Semantics
and Pragmatics of Dialogue (DECALOG).

Jonathan Ginzburg. 2012.The Interactive Stance:
Meaning for Conversation. Oxford University Press.

Markus Guhe. 2007.Incremental Conceptualization for
Language Production. NJ: Lawrence Erlbaum Asso-
ciates.

Julian Hough. 2011. Incremental semantics driven natu-
ral language generation with self-repairing capability.
In RANLP 2011 Student Research Workshop, pages
79–84, Hissar, Bulgaria.

Mark Johnson and Eugene Charniak. 2004. A tag-
based noisy channel model of speech repairs. InPro-
ceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, ACL ’04, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay.
2001. Dynamic Syntax: The Flow of Language Un-
derstanding. Blackwell.

Ruth Kempson, Eleni Gregoromichelaki, Wifried Meyer-
Viol, Matthew Purver, Graham White, and Ronnie
Cann. 2011. Natural-language syntax as proce-
dures for interpretation: the dynamics of ellipsis con-
strual. In A. Lecomte and S. Tronçon, editors,Ludics,
Dialogue and Interaction, number 6505 in Lecture
Notes in Computer Science, pages 114–133. Springer-
Verlag, Berlin/Heidelberg.

W.J.M. Levelt. 1989.Speaking: From intention to artic-
ulation. MIT Press.



David McKelvie. 1998. The syntax of disfluency in
spontaneous spoken language. InHCRC Research Pa-
per, HCRC/RP-95.

David Milward. 1991. Axiomatic Grammar, Non-
Constituent Coordination and Incremental Interpreta-
tion. Ph.D. thesis, University of Cambridge.

Günter Neumann. 1998. Interleaving natural language
parsing and generation through uniform processing.
Artificial Intelligence, 99:121–163.

Andreas Peldszus, Okko Buß, Timo Baumann, and David
Schlangen. 2012. Joint satisfaction of syntactic
and pragmatic constraints improves incremental spo-
ken language understanding. InProceedings of the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 514–
523, Avignon, France, April. Association for Compu-
tational Linguistics.

Matthew Purver and Ruth Kempson. 2004. Incremental
context-based generation for dialogue. InProceedings
of the 3rd International Conference on Natural Lan-
guage Generation (INLG04), number 3123 in Lecture
Notes in Artifical Intelligence, pages 151–160, Brock-
enhurst, UK, July. Springer.

Matthew Purver, Eleni Gregoromichelaki, Wilfried
Meyer-Viol, and Ronnie Cann. 2010. Splitting the
‘I’s and crossing the ‘You’s: Context, speech acts and
grammar. InProceedings of the 14th Workshop on the
Semantics and Pragmatics of Dialogue (SEMDIAL),
pages 43–50, Poznań, June. Polish Society for Cogni-
tive Science.

Matthew Purver, Arash Eshghi, and Julian Hough. 2011.
Incremental semantic construction in a dialogue sys-
tem. In Proceedings of the 9th International Con-
ference on Computational Semantics, pages 365–369,
Oxford, UK, January.

Yo Sato. 2011. Local ambiguity, search strategies and
parsing in Dynamic Syntax. In E. Gregoromichelaki,
R. Kempson, and C. Howes, editors,The Dynamics of
Lexical Interfaces, pages 205–233. CSLI.

Emanuel A. Schegloff, Gail Jefferson, and Harvey Sacks.
1977. The preference for self-correction in the or-
ganization of repair in conversation. Language,
53(2):361–382.

David Schlangen and Gabriel Skantze. 2009. A gen-
eral, abstract model of incremental dialogue process-
ing. In Proceedings of the 12th Conference of the Eu-
ropean Chapter of the ACL (EACL 2009), pages 710–
718, Athens, Greece, March. Association for Compu-
tational Linguistics.

Elizabeth Shriberg and Andreas Stolcke. 1998. How
far do speakers back up in repairs? A quantitative
model. InProceedings of the International Confer-
ence on Spoken Language Processing, pages 2183–
2186.

Gabriel Skantze and Anna Hjalmarsson. 2010. Towards
incremental speech generation in dialogue systems. In
Proceedings of the SIGDIAL 2010 Conference, pages
1–8, Tokyo, Japan, September. Association for Com-
putational Linguistics.


