
22

DyLan�: Parser for Dynamic Syntax
ISSN 2043-0167

EECSRR-11-05 October 2011 School of Electronic Engineering 
and Computer Science

Arash Eshghi, Matthew Purver and Julian Hough





DyLan∗: Parser for Dynamic Syntax

Arash Eshghi, Matthew Purver and Julian Hough

School of Electronic Engineering and Computer Science

Queen Mary University of London

Mile End Road, London, E1 4NS

June 30, 2011

Contents

1 How to read this document 2

2 Introduction 2
2.1 Dynamic Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The parsing process [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Graph representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Parsing in Context [3.2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Integrating Type-Theory with Records (TTR) . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Dialogue System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Mapping TTR record types to domain concepts incrementally . . . . . . . . . 10

3 Parsing and generation: The ds package 11
3.1 The Parser class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Adjusting the state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Parsing in Context: ContextParser . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Trees: The ds.tree package 13
4.1 The Tree Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Tree Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Node Addresses and Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Node addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 The NodeAddress class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Modal Operators and Modalities . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Labels: The ds.label package 15
5.1 Embedded Labels: the EmbeddedLabel and EmbeddedLabelGroup . . . . . . . . . . . 16
5.2 Contextual Labels: ContextualTreeLabel and ContextualActionLabel . . . . . . 16
5.3 Quantification and Scope-dependency labels . . . . . . . . . . . . . . . . . . . . . . . 17

∗DyLan is short for Dynamics of Language. Available from http://dylan.sourceforge.net/.

1

http://dylan.sourceforge.net/


6 Formulas: the ds.formula package 17

7 Actions: the action package 18
7.1 Atomic Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 The If-Then-Else Action: the IfThenElse class . . . . . . . . . . . . . . . . . . . . . 19

7.2.1 Meta-variables in DS: the ds.action.meta package and the MetaElement class 20
7.2.2 WARNING: the equals method sets meta-variable value . . . . . . . . . . . 21
7.2.3 A potential source of confusion: the instantiate method . . . . . . . . . . . 21
7.2.4 The exec method in IfThenElse class and the Backtracker . . . . . . . . . 21

8 Guilde to Action Specification 22
8.1 Structure of the lexicon and lexical templates . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Lexical Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 The Grammar and Lexicon classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Some important pointers in action specification . . . . . . . . . . . . . . . . . . . . . 25

1 How to read this document

This document describes some of the details of the prototype implementation of the Dynamic Syntax
(DS) grammar formalism, DyLan. As such, it should be read in conjunction with the documenta-
tion (Javadoc) that comes with the implementation, and various papers/books that describe the
Dynamic Syntax framework itself (Kempson et al., 2001; Cann et al., 2005; Purver et al., 2006).
This document is intended to be a bridge between DS theory and implementation; so here, we
give only a short introduction to DS describing the basic concepts, data-structures and procedures
involved, with blue hyper-links in square brackets (e.g. [2]) to other parts of this document which
specify where they are in the implementation and how they have been implemented. But even
there, for the most part, we only give an overview. Detail is provided only when the code and
the Java Documentation are judged as needing further elaboration. In the introduction to DS,
there will also be references to various parts of the DS literature which elaborate on the concept
under discussion. For those who are unfamiliar with DS, we suggest that you read at least this
introduction as otherwise the implementation section (3, the second half of the document) will not
make sense at all. And of course, if you are already familiar with DS, you can skip the introduction
altogether.

2 Introduction

The DyLan parser has been implemented in Java, following the formal details of Dynamic Syntax
as per Kempson et al. (2001); Cann et al. (2005). This includes a parser [3] and generator [3.3] for
English, which take as input a set of computational actions [7], a lexicon [8.1] and a set of lexi-
cal actions [7]; these are specified separately in text files in the IF..THEN..ELSE [7.2] procedural
meta-language of DS, allowing any pre-written grammar to be loaded. Widening or changing its
coverage, i.e. extending the system with new analyses of various linguistic phenomena, thus does
not involve modification or extension of the Java program itself, but only the lexicon and action
specifications. The current coverage includes a small lexicon, but a broad range of structures: com-
plementation, relative clauses, adjuncts, tense, pronominal and ellipsis construal, all in interaction
with quantification.
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More recently, DyLan has been integrated into the Jindigo dialogue system (Schlangen and Skantze,
2009) to provide its Interpreter module. See section 2.3, for more theoretical detail on how this
has been achieved.

2.1 Dynamic Syntax

Dynamic Syntax (Kempson et al., 2001; Cann et al., 2005) is a parsing-directed grammar formal-
ism, which models the incremental, online processing of linguistic input. Unlike many other for-
malisms, DS models the incremental building up of interpretations without presupposing or indeed
recognising an independent level of syntactic processing. Thus, the output for any given string
of words, parsed incrementally, token by token, is a semantic tree [4] representing its predicate-
argument structure, as in Figure 1.

John upset Mary.
Ty(t),

upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
upset′(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
upset′

Figure 1: A simple DS tree for “John upset Mary”

Grammaticality is defined as parsability, that is, the successful incremental construction of such
tree-structure logical forms, using all the information given by the words so far in the sequence, in
a left to right, time linear manner.

The logical formulae [6] are lambda terms of the epsilon calculus (Meyer-Viol, 1995), and more
recently Record Types of Type Theory with Records (TTR, see Cooper (2005), but also see below
section 2.2 for how TTR has been integrated with DS).

2.1.1 Parsing

The central tree-growth process of the model is defined in terms of conditional actions [7] whereby
such structures are built up. These take the form both of general structure-building principles
(computational actions), independent of any particular natural language, and of specific actions
induced by parsing particular lexical items (lexical actions). The core of the formal language is
the modal tree logic LOFT (Blackburn and Meyer-Viol, 1994), which defines modal operators 〈↓〉
and 〈↑〉, which are interpreted as indicating daughter and mother relations, respectively, with two
subcases 〈↓0〉, and 〈↓1〉 distinguishing daughters decorated with argument or functor formulae,
and two additional operators 〈L〉 and 〈L−1〉 to license paired linked trees (these are used for
the interpretation of relative clauses and adjuncts among other things, see (Cann et al., 2005)).
These operators can be grouped together to specify different modalities [4.2], i.e. paths to other
locations/nodes on the tree, relative to the current node. For example 〈↑1↓0〉Ty(e) says that the
argument sister of the current node is of type e. The actions defined using this language are
conditional transition functions between semantic trees, monotonically extending the input tree
and node decorations.
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The node decorations are labels [5] of different kinds, carrying different types of information.
In other words, each node is a set of labels. Labels can be true or false at any particular node; in
most cases the truth of a label at a node is its presence on that node. One notable exception is
that of modal labels, which usually check the presence of a label on another node on the tree, e.g.
〈↑1↓0〉Ty(e) holds if Ty(e) is present on the sister node of the current node.

The concept of requirement (also a kind of label, [??]) is central to the parsing process, ?X
representing the imposition of a goal to establish X, for any label X. Requirements may thus take
the form ?Ty(t), ?Ty(e → t), ?〈↓1〉Ty(e → t), ?∃xFo(x), ?∃xTn(x), etc. All requirements that are
introduced have to be satisfied during the construction process.

For example, the first action in parsing a sentence is a general computational action [??], termed
INTRODUCTION1, which develops the standard initial Axiom tree, with only one root node (here,
as in all such partial tree-structures, there is a pointer, ⋄, indicating the node under development):

?Ty(t), Tn(0), ⋄
(i.e. a basic requirement to construct a propositional formula), to
?Ty(t), Tn(0), ?〈↓0〉Ty(e), ?〈↓1〉Ty(e → t), ⋄
thereby inducing the sub-goals of constructing a type e argument (0) node and a type e → t pred-
icate (1) node, by which a predicate-argument formula can eventually be derived. In the lexicon,
words are are associated with lexical actions (see below 8.1 for how the lexicon is structured) in a
similar style, each a sequence of tree-update actions in an IF..THEN..ELSE format [7.2], employing
the explicitly procedural atomic actions [7.1], make, go, put, merge and others. A simple lexical
action for a proper name John is as follows:

John

IF ?Ty(e) If there’s a requirement for a Type e for-
mula

THEN put(Ty(e)) Label the node as Type e
put(Fo(John′) Label the node with semantic con-

tent/formula John′

put(〈↓〉 ⊥ Bottom restriction: this is a leaf node.
ELSE ABORT

A subsequent general computational action (Thinning) then removes the now satisfied type
requirement. A more complex lexical action for a transitive verb dislike takes the following form,
first making a new predicate node of type e → (e → t), and then an argument node with a

1In more recent versions of DS, namely in the treatment of English auxiliaries in Cann (2010), the INTRO-
DUCTION and PREDICTION actions are dispensed with for cross-linguistic generality, and also due to a unified
treatment of passives, where the syntactic subject is fixed by the main verb itself to the logical object position.
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requirement for type e (to be satisfied by parsing the object):

dislike

IF ?Ty(e → t) If there’s a requirement for a Type e → t
formula

THEN make(〈↓1〉); go(〈↓1〉) Make the functor (predicate) daughter
(down 1) and go there

put(Ty(e → (e → t))) Label the node as Type e → (e → t)
put(Fo(λxλy.Dislike′(x)(y)) Label the node with semantic con-

tent/formula λxλy.Dislike′(x)(y)
put(〈↓〉 ⊥) Bottom restriction: this is a leaf node.
go(〈↑1〉) Go back up to the mother node
make(〈↓0〉); go(〈↓0〉); put(?Ty(e)) Make the argument daughter, go there

and label it as requiring a type e formula
- which the object of the verb will provide
at a later point in the parse.

ELSE ABORT

So an IF-THEN-ELSE action is composed of a sequence of labels [5], and two separate sequences
of atomic actions [7.1], one comprising the THEN block, and the other the ELSE block. The
execution of such an action proceeds by first checking [5] the labels in order; if all succeed (i.e. if
all are true at the node where the pointer is), the THEN block is executed; otherwise the ELSE
block of actions fire.

This format of lexical specification is general: all lexical items are defined as providing such
actions, the concept of lexical content being essentially procedural. These obligatory lexical actions,
together with optional computational actions (also in the same format), induce a sequence of partial
trees in a monotonic growth relation as each word is consumed in turn.

We now turn to an algorithmic description of the parsing process.

2.1.2 The parsing process [3]

Given a sequence of words (w1, w2, ..., wn), the parser starts from the axiom tree T0 (a requirement
to construct a complete tree of type t), and applies the corresponding lexical actions (a1, a2, . . . , an),
optionally interspersing general computational actions (which can apply whenever their precondi-
tions are met). More precisely: we define the parser state [3] at step i as a set of partial trees Si.
Beginning with the singleton axiom state S0 = {T0}, for each word wi:

1. Apply all lexical actions ai corresponding to wi to each partial tree in Si−1. For each appli-
cation that succeeds (i.e. the tree satisfies the action preconditions), add resulting (partial)
tree to Si.

2. Adjust [3.1.1] the parse state: For each tree in Si, apply all possible sequences of computational
actions and add the result to Si.

If at any stage the state Si is empty, the parse has failed and the string is deemed ungrammatical.
If the final state Sn contains a complete tree (all requirements satisfied), the string is grammatical
and its root node will provide the full sentence semantics; partial trees provide only partial semantic
specifications.2

2Note that only a subset of possible computational actions can apply to any given tree; together with a set of
heuristics on possible application order, and the merging of identical trees produced by different sequences, this helps
reduce complexity.
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2.1.3 Graph representations

Sato (2010) shows how this procedure can be modelled as a directed acyclic graph, rooted at T0,
with individual partial trees as nodes, connected by edges representing single actions. While Sato
uses this to model the search process, we exploit it (in a slightly modified form) to represent the
linguistic context available during the parse – important in DS for ellipsis and pronominal construal
(Details are given in (Cann et al., 2007; Gargett et al., 2009), but also see the next section 2.1.4.).

We can also take a coarser-grained view via a graph which we term the state graph; here, nodes
are states Si and edges the sets of action sequences connecting them. This subsumes the tree graph,
with state nodes containing possibly many tree-graph nodes; and here, nodes have multiple outgoing
edges only when multiple word hypotheses are present. This corresponds directly to the input word
graph (often called a word lattice) available from a speech recognizer, allowing close integration
in a dialogue system – see below. We also see this as a suitable structure with which to begin to
model phenomena such as hesitation and self-repair: as edges are linear action sequences, intended
to correspond to the time-linear psycholinguistic processing steps involved, such phenomena may
be analysed as building further edges from suitable departure points earlier in the graph.3

2.1.4 Parsing in Context [3.2]

So far we have been considering parsing without any notion of context in place. This is, of course,
essential if we are to account for context-dependent phenomena in dialogue or monologue, such
as anaphora and different kinds of ellipsis, and their resolution. Here, we will not go into the
detail of how exactly such constructions are analysed in DS (for which, see Cann et al. (2007)).
Nevertheless, in order to later present how contextual parsing has been implemented we introduce
the core mechanisms here.

There are generally three basic mechanisms in DS which enable the resolution of anaphora and
ellipses from context:

1. Substitution:Copying/substitution of a formula from some other prior tree in context, into the
tree under construction. This is used to deal with anaphora and strict VP-Ellipsis readings.

2. Rerunning of Actions:Rerunning a sequence of actions used before to build some prior tree
in context, but this time with the current tree under construction as input. This is used to
get sloppy readings for VP-Ellipsis, and to resolve some forms of Bare Argument Ellipsis (see
Purver et al. (2006) for more theoretical detail)

3. Direct Extension Extending a tree in context directly: used to deal with Split Utterances and
adjuncts but also Clarification Ellipsis and Sluicing.

Thus, we need to store both trees at every step of a parse, and the actions that were used to
build them up, so that these may subsequently be used to recover the meaning of anaphoric and
elliptical expressions. To achieve this, the notion of a parse state described above will be revised in
favour of one in which parse states will have tuples in them rather than simply trees. We define a
parser tuple [3] as a triple, 〈T,W,A〉, where T is a (possibly partial) semantic tree, W is the string
of words so far parsed and A the sequence of actions (computational and lexical) used to construct
T from W. The initial parse state S0 contains only a single triple, in which T is the initial Axiom

3There are similarities to chart parsing here: the tree graph edges spanning a state graph edge could be seen as
corresponding to chart edges spanning a substring, with the tree nodes in the state Si as the agenda. However, the
lack of a notion of syntactic constituency means no direct equivalent for the active/passive edge distinction; a detailed
comparison is still to be carried out.

6



tree and W and A are both empty: S0 = {〈Axiom, ∅, ∅〉}. Accordingly we revise the parse process
described above:

Given a sequence of words (w1, w2, ..., wn), the parser starts from the empty state S0 = {〈Axiom, ∅, ∅〉},
and applies the corresponding lexical actions (a1, a2, . . . , an), optionally interspersing general com-
putational actions (which can apply whenever their preconditions are met). More precisely: we
define the parser state [3] at step i as a set of parser tuples of the form 〈Ti,Wi, Ai〉. Beginning with
S0 = {〈Axiom, ∅, ∅〉}, for each word wi:

1. Apply all lexical actions ai corresponding to wi to each parser tuple 〈T,W,A〉 in Si−1. If the
application is successful (i.e. the input tree T satisfies the action preconditions), we will get
an output tree To. Construct the new parser tuple 〈To,W + wi, A+ ai〉 and add it to Si.

2. Adjust [3.1.1] the parse state: For each tree in Si, apply all possible sequences of computational
actions in the same manner and add the result to Si.

If at any stage the state Si is empty, the parse has failed and the string is deemed ungrammatical.
Context can now be defined in these terms. At any point in the parsing process, the context C

for a particular partial tree T in the set Si can be taken to consist of:

1. a set of triples P ′ = {..., 〈Ti,Wi, Ai〉, ...} resulting from the previous utterance(s); and

2. the triple 〈T,W,A〉 itself.

Discourse-initially, the set P ′ will be empty, and the context will therefore be identical to the
standard initial parser state, the singleton set P0 containing only a single triple 〈T0, ∅, ∅〉 (where
T0 is the basic Axiom = {?Ty(t), ⋄}, and the word and action sequences are empty). As words are
consumed from the input string and the corresponding actions produce multiple possible partial
trees, together with their corresponding word and action sequences, the parser state set will expand
to contain multiple triples; note that the context C available to any tree will still be restricted to
its current triple (as P ′ is empty at this point). Once parsing is complete, we use the final set P1

to define the new starting state (and context) for the next sentence as P1 ∪ P0 (i.e. P1 with the
addition of the triple containing the basic axiom). This is slightly different in the implementation
for which see [3.2].

Note that here we have not covered how this context is in fact used to resolve ellipsis (for which
see Purver et al. (2006)). Suffice to say that this is achieved by two special computational actions
that use the context for tree update. These are substitution and regeneration. The former
uses context to copy semantic content/formulae from, into the tree under construction and the
latter develops the current tree using sequences of action stored in context. These are discussed in
a bit more detail in the implementation section below [5.2].

2.1.5 Generation

With the base formalism set out in a parsing perspective, we can define a generation system
reflecting production that applies the very same parsing mechanism, as we shall see, leading to
tight coordination between parsing and production. Our point of departure is Otsuka and Purver
(2003); Purver and Otsuka (2003), which gives an initial method of context-independent tactical
generation in which an output string is produced according to an input semantic tree, the goal tree.
The generator incrementally produces a set of corresponding output strings and their associated
partial trees (again, on a left-to-right, word-by-word basis) by following standard parsing routines
and using the goal tree as a subsumption check. At each stage, partial strings and trees are
tentatively extended using some word/action pair from the lexicon; only those candidates which

7



Figure 2: Parsing (left) and Generating (right) of John likes Mary

subsume the goal tree are kept, and the process succeeds when a complete tree identical to the goal
tree is produced (see Figure 2). Generation and parsing thus use the same tree representations and
tree-building actions throughout.

We can proceed to the definition of a generator state. A generator state G is a pair (Tg,X)
of a goal tree Tg and a set X of pairs (S,P ), where S is a candidate partial string and P is the
associated parser state (a set of 〈T,W,A〉 triples). Discourse-initially, the set X will contain only
one pair, of an empty candidate string and the standard initial parser state, (∅, P0). As generation
progresses, multiple pairs are produced as candidiate partial strings S are considered, each with
their own associated parser state P . In generation, the context C for any partial tree T in a state P
is defined exactly as for parsing: the set of triples P ′ = {..., 〈Ti,Wi, Ai〉, ...}; and the current triple
〈T,W,A〉. Once generation is complete, the state P1 paired with the chosen string S1 is taken to
form the new context for the next sentence P1 ∪ P0 (just as with parsing), hand-in-hand with the
new initial generator state X1 = (∅, P1 ∪ P0). Note here the close relationship between the parsing
and generation processes. They share the same basic component of their state (a parser state P, a
set of tree/word-sequence/action-sequence triples the generator state merely adds to this (partial)
candidate strings and a goal tree), and they share the same representation of context. In addition,
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as both processes are strictly incremental, there is no requirement that their initial states be empty
or contain only complete trees they can in theory start from any parser or generator state.

2.2 Integrating Type-Theory with Records (TTR)

More recent work in DS has started to explore the use of TTR to extend the formalism, replacing
the atomic semantic type and FOL formula node labels with more complex record types [6], and thus
providing a more structured semantic representation. This also allows tighter and more straightfor-
ward integration into incremental dialogue systems that work with concept frames, as the mapping
between a concept frame and a TTR record type is straightforward (DyLan has been integrated
into the Jindigo dialgue system (Schlangen and Skantze, 2009), for which see below section 2.3).

Purver et al. (2010) provide a sketch of one way to integrate TTR in DS and explain how it
can be used to incorporate pragmatic information such as participant reference and illocutionary
force. As shown in Figure 3(b) above, we use a slightly different variant here: node record types
are sequences of typed labels (e.g. [x : e] for a label x of type e), with semantic content expressed
by use of manifest types (e.g. [x=john : e] where john is a singleton subtype of e).

(a)
Ty(t),

arrive(john)

Ty(e),
john

Ty(e → t),
λx.arrive(x)

(b)

[

x=john : e
p=arrive(x) : t

]

[

x=john : e
]

λr :
[

x : e
]

[

x=r.x : e
p=arrive(x) : t

]

(c)





e=now : es
x=john : e
p=arrive(e,x) : t





[

x=john : e
]

λr :
[

x : e
]





e=now : es
x=r.x : e
p=arrive(e,x) : t





Figure 3: A simple DS tree for “john arrives”: (a) original DS, (b) DS+TTR, (c) event-based

We further adopt an event-based semantics along Davidsonian lines (Davidson, 1980). As shown
in Figure 3(c), we include an event term (of type es) in the representation: this allows tense and
aspect to be expressed (although Figure 3(c) shows only a simplified version using the current
time now). It also permits a straightforward analysis of optional adjuncts as extensions of an
existing semantic representation; extensions which predicate over the event term already in the
representation. Adding fields to a record type results in a more fully specified record type which is
still a subtype of the original:







e=now : es
x=john : e
p=arrive(e,x) : t






7→











e=now : es
x=john : e
p=arrive(e,x) : t

p′=today(e) : t











“john arrives” 7→ “john arrives today”

Figure 4: Optional adjuncts as leading to TTR subtypes

2.3 Dialogue System

DyLan has now been integrated into a working dialogue system by implementation as an Interpreter
module in the Java-based incremental dialogue framework Jindigo (Skantze and Hjalmarsson, 2010).
Jindigo follows Schlangen and Skantze (2009)’s abstract architecture specification and is specifically
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designed to handle units smaller than fully sentential utterances; one of its specific implementations
is a travel agent system, and our module integrates semantic interpretation into this.

As set out by Schlangen and Skantze (2009)’s specification, our Interpreter’s essential com-
ponents are a left buffer (LB), processor and right buffer (RB). Incremental units (IUs) of various
types are posted from the RB of one module to the LB of another; for our module, the LB-IUs
are ASR word hypotheses, and after processing, domain-level concept frames are posted as RB-IUs
for further processing by a downstream dialogue manager. The input IUs are provided as updates
to a word lattice, and new edges are passed to the DyLan parser which produces a state graph as
described above in 2.1.2 and 2.1.3: new nodes are new possible parse states, with new edges the
sets of DS actions which have created them. These state nodes are then used to create Jindigo
domain concept frames by matching against the TTR record types available (see below), and these
are posted to the RB as updates to the state graph (lattice updates in Jindigo’s terminology).

Crucial in Schlangen and Skantze (2009)’s model is the notion of commitment : IUs are hy-
potheses which can be revoked at any time until they are committed by the module which produces
them. Our module hypothesizes both parse states and associated domain concepts (although only
the latter are outputs); these are committed when their originating word hypotheses are commit-
ted (by ASR) and a type-complete subtree is available; other strategies are possible and are being
investigated.

2.3.1 Mapping TTR record types to domain concepts incrementally

Our Interpreter module matches TTR record types to domain concept frames via a simple XML
matching specification; TTR fields map to particular concepts in the domain depending on their
semantic type (e.g. go events map to Trip concepts, and the entity of manifest type paris maps
to the City[paris] concept). As the tree and parse state graphs are maintained, incremental sub-
sentential extensions can produce TTR subtypes and lead to enrichment of the associated domain
concept.

User: I want to go to Paris . . .
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Trip(from : City[london],
to : City[paris])

Figure 5: Incremental construction of a TTR record type over two turns

Figure 5 illustrates this process for a user continuation; the initial user utterance is parsed to
produce a TTR record type, with a corresponding domain concept – a valid incremental unit to
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post in the RB. The subsequent user continuation “from London” extends the parser state graph,
producing a new TTR subtype (in this case via the DS apparatus of an adjoining linked tree
(Cann et al., 2005)), and a more fully specified concept (with a further argument slot filled) as
output.

System behaviour between these two user contributions will depend on the committed status of
the input, and perhaps some independent prosody-based judgement of whether a turn is finished
(Skantze and Schlangen, 2009). An uncommitted input might be responded to with a backchannel
(Yngve, 1970); commitment might lead to the system beginning processing and starting to respond
more substantively. However, in either case, the maintenance of the parse state graph allows the
user continuation to be treated as extending a parse tree, subtyping the TTR record type, and
finally mapping to a fully satisfied domain concept frame that can be committed.

3 Parsing and generation: The ds package

This package provides the top level API for DS parsing and generation. It implements the parsing
and generation algorithms described above in section 2.1.2, namely, context-free parsing/generation,
and parsing/generation in context. Recall that for these, we needed slightly different notions of
parser tuple and parser state and this is reflected in the corresponding classes:

• The SimpleParser and SimpleGenerator classes, which implement context-free parsing/generation,
use a ParserState object: a set of ParserTuple objects.

• The ContextParser and ContextGenerator classes, which implement parsing/generation in
context, use a ContextParserState object: a set of ContextParserTuple objects.

The ParserState and ContextParserState classes are self-explanatory given the code and the
JavaDoc, so we do not go into them in any more detail here. Suffice it to say that ContextParserState
subclasses ParserState, the only difference between them being in the kind of ParserTuple they
have as their members: while ParserTuples populate a ParserState, ContextParserTuples pop-
ulate a ContextParserState.

The parsing and generation algorithms themselves are implemented in the Parser and Generator
classes, which ContextParser and ContextGenerator then subclass.

3.1 The Parser class

This class implements the parsing algorithm described above in section 2.1.2. It has access to a
lexicon (a set of words associated with lexical actions, often read from a text file) and a grammar
(the set of computational actions, also often read from file). Parsing, i.e. the top-level parseWords
method, proceeds by taking a list of words and parsing them one by one in order, interspersing
all sequences of computational actions. The result is a new ParserState, containing a set of
ParserTuples, representing all possible interpretations of the given string of words so far. The
interspersing of computational actions is done in the adjust method which we describe summarily
below.

This class is abstract, leaving the execAction method unimplemented. This method takes
a ParserTuple, an action (lexical or computational), and a word (empty/null if the previous
argument is a computational action) as argument, and returns a new ParserTuple which is the
result of applying that action to the ParserTuple passed as argument. This method is left abstract
so that it can be implemented differently in contextual and context-free parsing.
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As noted, the subclasses of the Parser class are ContextParser and SimpleParser. In ContextParser,
the execAction method returns a new ContextParserTuple, whereas in SimpleParser, a simple
new ParserTuple is returned.

3.1.1 Adjusting the state

Given a ParserState S, the adjustmethod applies all sequences of computational actions to every
ParserTuple in S. Some of these will fail as the actions’ preconditions will often not be met. But
every time this is successful the resulting ParserTuple is added to S. The method is called after
each word is parsed.

The computational complexity of this method is worse than exponential: roughly speaking, for
n computational actions, the complexity is O(n!). However, at the moment, this method keeps
track of which action/tree combinations have already been tried and which ones have succeeded,
so that they won’t be tried again. Moreover, if a resulting tree is already contained in the state,
it will not be added. This reduces the complexity a great deal, but state adjustment still remains
a computationally expensive process. In the future, we aim to develop a set of parsing heuristics,
possibly learned from annotated data, in order to do scored parsing whereby not all actions have
equal probability of being applied, i.e. they will be prioritised. This will help reduce the complexity.

3.2 Parsing in Context: ContextParser

The ContextParser class subclasses Parser implementing the execAction method, such that in-
stead of simply ParserTuples, it takes a ContextParserTuple as argument, and returns a tuple
of the same type. This class uses a ContextParserState object to keep track of the parse state,
so that the parse state is populated with tuples of type ContextParserTuple, rather than just a
ParserTuple.

Now recall from the introduction (2.1.4) that parsing in context involved transitions, given
by both lexical and computation actions, between parse states which contain tuples of the form
〈T,W,A〉, where T is a partial tree, W is the sequence of words parsed so far, and A the sequence
of actions used to get to 〈T,W,A〉. The ContextParserTuple class represents just such a tu-
ple. As noted, objects of this class are members of a ContextParserState object, used by the
ContextParser to store the parse state when parsing in context.

There is a slight difference between how the notion of context was formulated theoretically
above, and how it has been implemented. Recall that the context C for any tuple, 〈T,W,A〉, during
the parse process was defined to consist of:

1. a set of triples P ′ = {..., 〈Ti,Wi, Ai〉, ...} resulting from the previous utterance(s); and

2. the triple 〈T,W,A〉 itself.

Generally when moving on from parsing one string of words to another (including when there’s
a speaker switch, and the parser needs to turn itself into the corre), the parse state is reset initially
(via the addAxiom method) to include only the axiom tuple, i.e. 〈Axiom, ∅, ∅〉. This new Axiom
tuple, together with each new tuple produced from it during the parse of the new string of words is
linked, or has a reference to, a ‘previous’ ContextParserTuple, providing its context. This means
that each new tuple, during the course of the new parse, will have exactly one old tuple as its context.
But P ′ above is a set containing possibly more than one tuple. This is accommodated by initially
having as many copies of the axiom tuple, as there are old tuples in P ′. For example, if two trees
(tuples) resulted from the previous string of words (corresponding to two different interpretations
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of that string), then when resetting the state for the new parse, we’d have two copies of the Axiom
tuple, each linked to one of the tuples in P ′. This also means that any subsequent tuple produced
from any one of these Axiom tuples, will be linked to the same tuple in P ′ and thus have the same
context.

3.3 Generation

As noted in the introduction, generation in DS is parasitic on parsing, using exactly the same
mechanisms for tree update. This is reflected in the corresponding class Generator which relies on
a Parser object to test a word hypothesis at each step of the generation process. The Generator class
is abstract leaving the choice of a Parser object down to its subclasses, namely, SimpleGenerator
and ContextGenerator. While the former relies on a SimpleParser for tree update, the latter
relies on a ContextParser. Furthermore, this means that context-dependent generation is achieved
through context-dependent parsing.

The generation algorithm (as described in section 2.1.5) is implemented in Generator’s generate
method which takes the goal tree to be realised as argument. This proceeds one word at a time
(calling the generateWord method), each time extending the current GenerationState. This
continues as long as a word hypothesis from the lexicon can be found whose parsing would result
in a tree that subsumes the goal tree. If not, the resulting GenerationState will be empty and
generation has failed.

The GeneratorTuple and GenerationState classes correspond directly to what was described
in the introduction above (2.1.5), and given the Java Documentation and the code, we do not go
into them here.

4 Trees: The ds.tree package

This package implements the DS semantic Tree in addition to the language of the Logic of Finite
Trees (LOFT (Blackburn and Meyer-Viol, 1994)), which enables the interpretation of modal labels
as used in the specification of lexical and computational actions [7].

4.1 The Tree Class

Rather than the usual way of defining trees recursively, this implementation uses a map from node
addresses [4.2] to nodes as the underlying data structure, for closer correspondence to DS. Each
node on the tree is a set of labels.

Each tree has exactly one pointer which is just a node address. This is the address of the node
that contains the DS pointer, marking the node currently under development in the parse. Parsing,
i.e. the top-level parseWords method, proceeds by taking a list of words and parsing them one by
one in order, interspersing all sequences of computational actions.

In addition to the usual get and set methods and moving about on the tree, this class provides
the tree manipulation operations that correspond to atomic actions [7.1] in DS. These are:

• make: this takes a single modal operator [4.2.3] as argument and adds the node pointed to
by the operator to the tree. The modal operator has to be one of 〈↓0〉 or 〈↓1〉, corresponding
to the argument and functor daughters of the pointed node respectively.

• go: this takes a modality [4.2] as argument and sets the pointer to the node reached when
the path specified by that modality is traversed.

13



• put : takes a label [5] as argument and adds it to the pointed node

• merge: takes a modality as [4.2] argument and adds the contents of the node specified by
that modality to the pointed node, removing the node specified by the modality.

4.1.1 Tree Subsumption

As outlined in the introduction, at each step of the generation process (after running an action,
whether computational or lexical), the output tree is checked against the goal tree for subsumption.
If the produced tree subsumes the goal tree, we produce the word whose associated lexical action
we just ran and then carry on extending the tree until it matches the goal tree exactly.

The Tree class provides the subsumes method for this, which takes another Tree as argument.
This calls the subsumes method provided by the Node class, for all the nodes on the tree. The
subsumes method in the Node class in turn calls the subsumes method provided by each label for
all the labels on the node. A Node subsumes another if for each label on the node, there’s some
other label on the other node which is subsumed. The Tree subsumption check succeeds if every
node subsumes some other node on the other tree.

4.2 Node Addresses and Modalities

4.2.1 Node addresses

Each node on a tree has an address relative to the root node. The root node has the address ‘0’. As
trees are binary in DS, every other node on the tree is reachable from the root node, via a sequence
of steps, either going down-left to the argument daughter (0) or down-right to the functor daughter
(1). If node A has address X, then the address of the left (argument) daughter of A is given by
adding a 0 at the end of X. The right (functor) daughter’s address is given by adding a 1.

We also have paired Linked-Trees in DS, used to model relative clauses and island constraints
among other things (for more on which see almost any DS paper/book, e.g. Cann et al. (2005),
chapter 3). A linked tree is parasitic on the main/matrix tree, and is connected to it at a certain
node on the main tree. The address of the root of a linked tree attached at the node address X on
the main tree, is given by adding a ‘L’ at the end of X.

In DS we also have the notion of an unfixed or sometimes locally unfixed node, i.e. a node
whose place on the tree (its address) is not yet fixed at a certain point in the parse, but only
constrained to be e.g. somewhere below some other node. This is used to model clitic clustering
in some languages and left dislocation in English, among other things (we have not covered these
in the introduction above, see any DS paper/book for more detail). The address of a node that is
unfixed but constrained to be below node A with address X is given by concatenating the Kleene
Star (*) at the of X. For locally unfixed nodes concatenate a ‘U’.

A node address therefore is a string of 0s, 1s, *s, Us and Ls, relative the root of a main/matrix
tree in DS.

4.2.2 The NodeAddress class

In addition to storing a node address as a string and, as such, playing the role of the key in the
map that underlies our Trees, this class provides a set of methods which enable the interpretation
of tree modal operators and modalities in LOFT. A method, to, determines, given a tree, whether
a node address can be reached from another, by traversing the path specified by a given modality.
Another, go, returns the address of the node that is reached when a given modality is traversed.
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The class also contains methods for the expansion of underspecified modal operators (those with
the Kleene Star, see any DS paper/book).

4.2.3 Modal Operators and Modalities

The BasicModalOperator class stores a single modal operator in LOFT. This is the combination
of a direction, up or down, with a path, one of either 0, 1, L, * or U, e.g. 〈↓0〉 is a single modal
operator which ‘points to’ the argument (0) daughter of the current node.

These can then be grouped together, in the Modality class, to form a single modality, e.g.
〈↑0↓1〉 is modality composed of exactly two modal operators which together, point to the node that
is reached by going up to the mother node and then down to the functor (1) daughter (i.e. to the
sister node).

Note that a modality isn’t really meaningful on its own. It needs to be combined with some
label to form a modal label. For example, 〈↑0↓1〉Ty(e), a modal label, means that Ty(e) holds, or
is present, on the sister node.

These classes also provide regular expressions which are used to read/parse modalities used in
action specifications. The regular expressions specify what it is for a sequence of characters to
specify a modality, i.e. they are used to parse/construct modalities from strings.

5 Labels: The ds.label package

This package implements all DS labels, as used in action specifications. All the classes here subclass
the Label class.

Recall that the most central characteristic of all labels is that they can be checked for truth or
falsity at the pointed node on a tree. The Label class therefore includes the check method which
takes a tree and a context (a ParserTuple, see above) as argument and returns either true or false.
This method should always specify what it is for a label to be true. By default, in the Label class,
the truth of a label is simply defined, in the check method, as its presence on the pointed node.
But specific labels often override this method (e.g. a Modal Label needs to check truth of a label
on another node, and not the pointed one).

Any particular subclass of Label almost always defines its functor or predicate . For example a
type label in DS is associated with the ‘ty’ functor, a formula label with ‘fo’. Each label type then
also defines a regular expression, often in terms of this functor, which is used in the constructor
of the class to parse/construct a label from a string (as read from an action specification). For a
table of all labels and associated functors see below 6.

Any particular subclass of Label should also implement its own getMetas method, which
returns the set of all the meta-variables contained within it (for an explanation of what meta-
variables are and their relation to labels and actions see below 7.2.1).

Subclasses of Label must also implement the instantiate method. See below 7.2.1 for an
explanation of what this method is supposed to do. We can’t go into it here as we haven’t yet
introduced meta-variables.

Most of these labels and their associated classes are self-explanatory given the DS literature
and the Java Documentation. So we do not go into them in any detail. Some of these might be
less clear, so below we provide an overview of what they are.
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5.1 Embedded Labels: the EmbeddedLabel and EmbeddedLabelGroup

Embedded labels, i.e. subclasses of the EmbeddedLabel class, are labels which embed some other
label. One example is Requirement which is given by combining its functor, ‘?’, with another label,
representing a goal to establish that other label on the node on which it appears. Other embedded
labels are: ExistentialLabel, NegatedLabel.

EmbeddedLabelGroup on the other hand, is the super class of all labels that embed more
than one other label. One example is ModalLabel, which embeds a group of labels, e.g. 〈↓0
〉(Ty(e), Fo(John′)), which checks for the truth of Ty(e) and Fo(John′), on the argument daugh-
ter node of the pointed node.

Other subclasses of EmbeddedLabelGroup are: ExistentialLabelConjunction and ContextualTreeLabel.

5.2 Contextual Labels: ContextualTreeLabel and ContextualActionLabel

Before we can introduce what these labels are we first need to outline the computational actions
in which they are used. Recall from the introduction that we postponed discussion of the compu-
tational actions that use the context for tree update and enable the resolution of anaphora and
ellipses. These were substitution and regeneration, which we will now consider summarily:

Substitution

IF 1: Ty(X), ?∃x.Fo(x),
2: 〈T,W,A〉 ∈ C
3: {Ty(X), Fo(Y )} ∈ T

THEN put(Fo(Y ))
ELSE ABORT

The substitution rule4 says that if the current node is marked as type X (i.e. Ty(X)), and it
has a requirement for a formula value (i.e. ?∃x.Fo(x)), and for some tuple in context 〈T,W,A〉 ∈ C,
T contains a node of the same type (i.e. X), with some formula decoration Y , then take the formula
and decorate the pointed node with it (put(Fo(Y ))). This rule is used to resolve anaphora and
VP-Ellipsis, whereby a formula value is copied from context into the local tree (see Purver et al.
(2006) for more detail).

The ContextualTreeLabel class provides the means to express lines 2 and 3 of the substitu-

tion rule in terms of a single label. As a subclass of EmbeddedLabelGroup, ContextualTreeLabels
embed a group of other labels. In the rule above, the embedded labels are Ty(X) and Fo(Y ). Check-
ing/truth of an instance of ContextualTreeLabel (the check method) is defined as the truth of all
the embedded labels, on some node on the context tree, i.e. checking such a label involves searching
the trees in context for a node that contains all the embedded labels.

As per the table of label functors 6, ContexualTreeLabel has the associated functor, context tree,
which is, as noted, used in action specifications to express lines 2 and 3 of the substitution rule.
For example, the equivalent of these lines in action specification text files would be: context tree(ty(X),

fo(Y)), which is true just in case both ty(X) and fo(Y) can be found on a single node on some tree
in context.

4This is a simplified version of the original DS substitution rule, in that it does not check to make sure that the
formula copied from context is not present locally. For this see (Purver et al., 2006).
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We now turn to the second rule/computational action that uses context for tree update:

Regeneration

IF 1: Ty(X), ?∃x.Fo(x),
2: 〈T,W,A〉 ∈ C,
3: 〈ai, . . . , ai+n〉 ⊑ A,
4: ai = 〈IF φ1 ,THEN φ2 ,ELSE ABORT〉,
5: ?Ty(X) ∈ φ1,

THEN do(〈ai, . . . , ai+n〉)
ELSE ABORT

This is the computational action that updates a tree by rerunning a sequence of actions stored
in context, on the local tree under construction. In particular, if the pointed node is annotated
with some type X (i.e. Ty(X)) and there’s a requirement for a formula label (i.e. ?∃x.Fo(x)), and
there’s some action sequence in context that is triggered by ?Ty(X), then run that action sequence
on the local tree (i.e. do(〈ai, . . . , ai+n〉)).

This action, like all other computational actions is run when the state is adjusted (see above),
during a parse. It is used to get sloppy readings for VP-Ellipses and to resolve some forms of Bare
Argument Ellipsis (for a detailed analysis of how this is achieved see (Purver et al., 2006)).

Analogous to the substitution rule above, in which 2 of the lines were expressed in terms
of a single ContextualTreeLabel, a ContextualActionLabel expresses all lines 2, 3, 4, and 5 of
regeneration in terms of a single label. The associated functor for ContextualActionLabel is
triggered by, e.g. triggered by(A, ?Ty(X)) expresses lines 2, 3, 4, 5 in the above rule, where
A is a place holder for an action sequence, and ?Ty(X) is what the first action in this action
sequence should include as one of its triggers/preconditions. After checking such a label, A will be
instantiated to an action sequence, which is run when the parser encounters the atomic action do.
This always takes just such an action sequence as argument and runs it.

5.3 Quantification and Scope-dependency labels

Some of the labels in the labels package are used to establish scope dependencies among the
quantifiers (like ‘the’, ‘a’, ‘every’ and ‘most’) encountered in the course of a parse. We will not go
into any detail on how DS handles quantification and how such dependencies are established. For
this see Gregoromichelaki (2006); Kempson et al. (2001) for a detailed account. Suffice it to say
that the corresponding label classes are: ScopeStatement, ScopeLabel, DomLabel, DomPlusLabel,
ScopeSaturationLabel, and IndefLabel. Also see table 6, for what functors each of these have
and what their corresponding meanings are in the language of DS.

6 Formulas: the ds.formula package

Formulas are passed as argument to a FormulaLabel, annotating nodes with semantic content.
This package provides classes for the representation and construction of different kinds of formulas.
The top level class which all kinds of formula must subclass is Formula. This class includes a set
of regular expressions for parsing/constructing different kinds of formulas from strings (which are
often read from action specification files). See below table 8 for examples of how to write different
sorts of formulae in action specifications.

There’s a close correspondence between the structure of each sort of semantic formula and the
corresponding class and therefore the classes in this package are self-explanatory given the Java
documentation and the DS/Epsilon Calculus/TTR literature; we only list these below with a short
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description of what they are, what operations they support and where in the DS literature they
have been discussed:

• The EpsilonTerm class: represents epsilon terms, see any DS paper/book, e.g. Cann et al.
(2005) section 3.2, on how the content of noun phrases is represented in the epsilon calculus.

• The CNOrderPair class: represents CN (common noun) order pairs, for which see any DS
paper book on the internal structure of terms in DS, e.g. Cann et al. (2005) section 3.2.

• The LambdaAbstract class: represents lambda formulas of the lambda calculus. It pro-
vides methods for functional application (beta-reduction), conjunction and variable substitu-
tion/renaming. See any DS book/paper.

• The TTRFormula class: represents TTR record types. It provides methods for relabelling,
intersection, merge of record types in addition to checking whether a record type is a subtype
of another. See above section 2.2, or Purver et al. (2009) for a more detailed discussion of
how record types can be used for semantic content representations in DS.

7 Actions: the action package

As covered in the introduction above, actions in DS drive the parse. They all take a tree as
input, extending it or updating it in some way, returning the resulting tree. Accordingly, in
the implementation, all actions, i.e. atomic actions and the If-Then-Else action, implement the
Effect interface, which contains one method: exec. This method takes a tree and a context (a
ParserTuple, possibly empty/null of we’re doing context-free parsing, see above) as argument and
returns a tree.

Computational and Lexical actions have their own classes, ComputationalAction and LexicalAction,
and these both subclass the Action class. The Action class simply wraps an If-Then-Else action
and gives it a name 5. In the case of ComputationalActions the name will be the DS name of the
action, which is read together with the action specification from file, e.g. thinning, elimination.
In the case of a LexicalAction the name will be the word to which the action corresponds.

7.1 Atomic Actions

Some actions, i.e. the classes in the ds.action.atomic package, are atomic in the sense that
they can’t be decomposed. As we will see below, each If-Then-Else action is associated with
2 sequences of these, either associated with its THEN or its ELSE clause. Atomic actions are
usually basic operations on trees, and the exec method in these cases usually calls methods in
the Tree class, as covered above 4.1. Moreover, atomic actions, very much like methods/functions
in any programming language (but in the ‘programming language’ of DS) usually take arguments
of different types. We list all atomic actions below, together with a brief description of what
they do (i.e. what the corresponding exec method does), what sort of arguments they take and
where they’re defined in the DS literature. Given this, the corresponding classes should be self-
explanatory:

5Unlike ever before, in more recent versions of DS a lexical item can be associated with a sequence of more than
one If-Then-Else action, run in order. This recent update is due to the integration/reconciliation of the account of
auxiliaries in Cann (2010) with existing ellipsis resolution mechanisms, particularly, the re-running of actions from
context. For more information, consult the authors of this document as this change has not yet been published
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• Go takes a modality as argument and moves the pointer to the node that is reached when
that modality is traversed. See any DS paper/book.

• Make takes a single downward modal operator as argument and makes/creates the corre-
sponding child node. So, make(\/0) makes the argument (left) daughter of the pointed node.
See any DS paper/book.

• Put takes a single label as argument and adds that label to the pointed node. See any DS
paper/book.

• Merge takes a modality as [4.2] argument and adds the contents (i.e. a set of labels) of
the node specified by that modality to the pointed node, removing the node specified by the
modality.

• Do takes an action sequence as argument and runs it. See above 5.2, but also see Purver et al.
(2006) for more detail.

• BetaReduce takes no arguments. If the argument and functor daughters of the pointed
node both contain formulae, the function expressed by the formula on the functor daughter
(a lambda term) is applied to the formula on the argument daughter, and the result put on
the pointed node. This is essentially how semantic content accumulates in the root node of
the tree, i.e. by a series of such applications. See any DS book/paper for more detail.

• Freshput takes a variable type as argument (i.e. one of ‘entity’, ‘event’, or ‘prop’ and
decorates the pointed node with a formula that is just a fresh (unused elsewhere on the tree)
variable of the specified type. See Cann (2010) for more detail.

• GoFirst takes a label as argument and moves the pointer to the first node that contains that
label higher up in the tree. See Gregoromichelaki (2006) for more detail.

• Conjoin takes a formula as argument and if the pointed node contains a formula label (i.e.
is decorated with a formula), decorates the pointed node with the logical conjunction of the
two formulas. This action is used to define the computational action, Link-evaluation, for
which see any DS book/paper.

For a table of atomic actions, their corresponding functors and examples see the table below 7.

7.2 The If-Then-Else Action: the IfThenElse class

It should by now be clear that in DS, grammatical and lexical rules are all formulated in terms of
conditional actions in an If-Then-Else format. As outlined in various places above, an If-Then-Else
action has the following three components:

1. The IF block is an ordered sequence of Labels, also called preconditions or triggers of the
action, which are checked whenever an action is executed.

2. The THEN block An ordered sequence of atomic actions or Effects, or composite macros,
that are run in order just in case all the labels in the IF block are true at the pointed node.

3. The ELSE block An ordered sequence of atomic actions, or composite macros, that are run
just in case one of the labels in the IF block is false, i.e. when the preconditions aren’t met.

Before we can move on to describe in more detail how the exec method in the IfThenElse class
is implemented we need to say more about Meta-variables in DS, and their implementation.
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7.2.1 Meta-variables in DS: the ds.action.meta package and the MetaElement class

As we have seen, labels, or better to say the predicates/functors associated with them, often
take arguments. For example the label functor/predicate Ty, takes a lambda calculus func-
tional/combinatorial type as argument, e.g. Ty(e → t). However, these arguments are not nec-
essarily constants, or actual values: they can also contain variables. So for instance Ty(X) is a
perfectly valid precondition for an action. In the implementation, we call these Rule Meta-variables,
as distinct from Formula Meta-Variables. The latter provide content underspecification and are
used to parse both anaphora and auxiliaries (for more detail see any DS book/paper). By conven-
tion - and this is essential in action specifications - Meta-variables are always named using capital
letters.

The meaning of rule meta-variables is tacitly existential, i.e. a label like Fo(X) is true just in
case there is a possible instantiation for X, such that Fo(X) is present on the pointed node. So for
instance, checking Fo(X) on a node that has the label Fo(John′) returns true, and instantiates X
to John′. Thereafter (i.e. in the rest of the If-Then-Else action in which the meta-variable occurs),
X will be assumed to have this value, i.e. once X has been instantiated in this way, checking Fo(X)
is the same as checking Fo(John′).

The action.meta package provides classes for the different types of meta-variable, based on
the different types of label that can take them as argument, or equivalently, based on the type of
value that the meta-variable can be assigned. Examples are types, formulas, node addresses, etc.
The name of a class in this package always starts with Meta, followed by the kind of value that
the corresponding meta-variable can take, e.g. MetaType, MetaFormula, MetaNodeAddress, etc.
Note that each Meta- is a subclass of the class that implements the value that the Meta- can take.
For instance MetaType is a subclass of Type, i.e. every MetaType is a Type, just as in Ty(X), the
meta-variable X is a type.

Each of these classes embed/wrap a MetaElement of the same type, so for instance, a MetaType
embeds a MetaElement<Type>. A MetaElement<T> is basically a pairing between a name (the
name of the variable, e.g. X) and a value/object of type/class T .

There is sometimes more than one possible instantiation for a meta-variable when a label is
checked. For instance, consider the label: < X > Ty(e), instructing us to find some modality X
at which Ty(e) holds: there may be more than one such modality on any single tree. However, in
checking a label in an If-Then-Else action at each step, we need to find an instantiation for the
meta-variable(s) involved at that step/label, that not only make that label true, but also all the
subsequent labels in the IF clause (as that meta-variable might be involved in those subsequent
labels). In other words, the goal is not just to find meta-variable instantiations which make the
current label true, but a set of instantiations for all the meta-variables involved in the IF block,
such that all the labels turn out to be true. There may be no such set, in which case the action
fails, or there may be one or more. This means that we have search space, and that we can use
backtracking, for a depth-first search of all possible instantiations of the meta-variables. E.g. if we
choose a value v for X at label i of the IF block, and X is involved at label i + k, in case value v
fails to make label i+ k true, we have to go back to step i to find another value for X.

To accommodate backtracking, for any single MetaElement, the class provides the means to
keep track of which values have been tried and succeeded, i.e. every MetaElement keeps track of
its own backtracking history.
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7.2.2 WARNING: the equals method sets meta-variable value

As noted elsewhere, checking labels often involves checking their presence on a node, i.e. we check
to see if there’s a label on the node in question (often the pointed node), that is equal to the label we
are checking. If a label involves a meta-variable, e.g. Ty(X) and the pointed node has a Ty(e) on
it, then when checking whether Ty(X) = Ty(e), the equals method in the TypeLabel class would
in turn call the equals method for the meta-variable X. This will always succeed and instantiate
X to e, unless e is already in the X’s backtracking history (i.e. it has already been tried)

The point here is: for all the classes in action.meta, checking equality, if successful, instantiates
the meta-variable, i.e. checking a label involving a meta-variable will unify that label, if possible,
with the label to which it is compared. In the above example, Ty(X) will be unified with Ty(e),
instantiating X to e.

7.2.3 A potential source of confusion: the instantiate method

All meta-variable classes and labels must implement the instantiate method. It might seem that
this method will assign a value to the meta-variable. This isn’t so. Instead, the method returns
the actual value assigned to the meta-variable if there is one; otherwise nothing is done and the
meta-variable itself is returned unassigned. For example, instantiating the meta-variable X = e (a
MetaType) would result in a Type object representing type e.

All labels (subclasses of Label) also implement the instantiate method. In the case of labels,
the method usually instantiates any embedded meta-variables as above and wraps the returned
value in a label of the same kind. For instance, the label Ty(X = e), which has the embedded
meta-variable X with the value e, would instantiate to Ty(e). The instantiate method is used when
a label is put on a node, i.e. we never put a label containing a meta-variable on a node, we always
instantiate it first.

7.2.4 The exec method in IfThenElse class and the Backtracker

The IfThenElse class is paired with the helper Backtracker class which enables backtracking, i.e.
each IfThenElse action is associated with its own Backtracker object. This class keeps a record
of all the meta-variables involved in the IfThenElse action, a record (map) of where (at which IF
step) each meta-variable is first used in the action (so that we know which step to go back to
in order to try other values for the meta-variable in case a previous value for it failed to make
some subsequent label true), and the IF step (an index, pointing to a label) that is being currently
checked. The latter is initially set to be 0, i.e. the first label in the IF block of labels. Using these
resources the Backtracker class provides the canBacktrack method, which returns true if we can
backtrack to a point where a previously instantiated meta-variable can be given a new value which
also succeeds. This then sets the current IF step to the IF step where this happened, uninstantiates
all the meta-variables introduced after this step so that they can get new values too.

Given the Backtracker, the exec method in the IfThenElse class proceeds by checking the
labels one by one. If one of these fails, it attempts to backtrack to a previous step, using the
canBacktrack method of Backtracker. It does this until either all the labels are successfully
checked (i.e. a set of assignments can be found for all the meta-variables involved in the labels
which make them all true), in which case the sequence of atomic actions associated with the then

block are executed in order; or all backtracking attempts fail (i.e. the canBacktrack method
returns false), meaning that we have reached a label that cannot be made true, having tried all
possible assignments to the meta-variables so far seen, in which case the atomic actions associated
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Label Class Functor Example Meaning in DS

TypeLabel ty ty(e>t) Ty(e → t)

FormulaLabel fo fo(john) Fo(john′)

Requirement ? ?ty(e>(e>t)) ?Ty(e → (e → t))

ExistentialLabelConjunction Ex. Ex.fo(x) ∃x.Fo(x)

AddressLabel tn tn(0) Tn(0)

ContextualTreeLabel
context tree context tree(fo(X), ty(Y)) 〈T,W,A〉 ∈ C

{Fo(X), T y(Y )} ∈ T

ContextualActionLabel

triggered by triggered by(A, ty(e)) 〈T,W,A〉 ∈ C,
〈ai, . . . , ai+n〉 ⊑ A,
ai = 〈IF φ1

THEN φ2

ELSE ABORT〉,
T y(e) ∈ φ1

BottomLabel ! ! ⊥
FeatureLabel + +Q +Q

NegatedLabel ¬ ¬ty(e) ¬Ty(e)
ModalLabel <...> < /\1\/0 >fo(john) 〈↑1↓0〉Fo(John′)

SubsumptionLabel subsumes subsumes(< /\1\/0 >) subsumes(〈↑1↓0〉)
DOMLabel DOM DOM(a) DOM(a)

DOMPlusLabel DOM+ DOM+(a) DOM+(a)

ScopeLabel Sc Sc(a) Sc(a)

ScopeStatement Scope Scope(a<b<c) Scope(a < b < c)

IndefLabel Indef Indef(+) Indef(+)

Figure 6: Guide to Action Specification: Table of all DS labels and their associated functors

with the ELSE block will be executed in order (this is often just the atomic action Abort, which
returns a null tree, and the IfThenElse action has failed).

8 Guilde to Action Specification

The (meta-)language of Dynamic Syntax in which all computational and lexical actions are specified
(different labels, modalities, atomic actions, logical symbols etc.) involves, like any other formalism,
a set of symbols that can either be produced manually with pen and paper or using type-setting
software like Latex. Since we need our parser to be able to load these actions from file we have
chosen a set of equivalent text-based symbols, or character combinations that correspond to the
DS vocabulary. These are symbols/functors associated with different labels, atomic actions and
formulas. Below you will find tables which give the mappings between DS symbols (as you would
find in any DS paper/book) and their associated text-based equivalents. Table 6 specifies text-based
equivalents of all DS labels and their associated arguments, and examples. Table 7, on the other
hand, tells you about text-based equivalents of all DS atomic actions and the kinds of argument
that they can take, and table 8 gives you examples of how to specify formulas in text files.

The parser in its current state includes different versions of lexical and computational action
specifications for the English language. These can be found under the resources folder, which
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DS action Class Argument
type

Text Example DS Meaning

go Go a modality go(< /\1\/0 >) proper(NAME,PERSON,CLASS)go(〈↑
make Make a downward

modal oper-
ator

make(\/1) make(↓1)

do Do an action
sequence

do(A) do(A)

merge Merge a modality merge(< /\1\/∗ >) merge(〈↑1↓∗〉)

put Put a label put(?ty(e)) put(?Ty(e))

freshput Freshput a meta-
variable
and a
variable
type

freshput(X, event) freshput(X, event)

beta− reduce BetaReduce none beta-reduce beta− reduce

conjoin Conjoin a formula conjoin(love(john, mary)) conjoin(love(John′,Mary′))

Figure 7: Guide to Action Specification: table of all DS atomic actions, their argument types and
examples

Formula Type Text-based functor/pattern Example in DS Text-based equivalent

Lambda Abstract ˆ λx.λy.adore(x, y) X^Y^adore(X,Y)

Epsilon Term eps ǫ, x,man(x) eps,x,man(x)

Iota Term iota ι, x,man(x) iota,x,man(x)

Tau Term tau τ, x,man(x) tau,x,man(x)

CN Ordered Pair no functor x,man(x) x,man(x)

TTR Record Type [label1:type1|label2:type2|...]

[

x1 : john
p : man(x1)

]

[x1:john|p:man(x1)]

Figure 8: Guide to Action Specification: table of formulas, associated text-based functors and
examples
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is itself included right under the main project folder. Each of these corresponds to DS action
specifications at various stages of its development. Generally the more recent any of these is,
the more linguistic phenomena it covers. Each folder included under resources will contain the
following text files, described below:

• computational-actions.txt: This contains the set of computational actions in the If-Then-
Else format.

• lexical-actions.txt: This contains the set of lexical actions, also in the If-Then-Else
format. Each of these corresponds to a syntactic category (e.g. transitive verb, proper noun,
determiner etc.). So each action here could be associated with many of the words in the
lexicon.

• lexicon.txt: This is the lexicon, one line per word. See below for a more detailed description.

• lexical-macros.txt: This contains the set of lexical macros. As noted above, these are
named sequences of atomic actions, which can be called by a lexical action.

8.1 Structure of the lexicon and lexical templates

In DS, each word is associated with a lexical action. This is however an inefficient form of represen-
tation, as many words fall under the same syntactic category (i.e. their associated lexical actions
effectively do the same thing) but differ only e.g. in associated predicates, tense (past, present,
infinitive etc.) and person (third person or not), if the syntactic category in question is a verb.
Lexical specification in the lexical-actions.txt file therefore takes the form of templates. A
template takes arguments or place-holders which can be used elsewhere in the body of the action.
As an example consider the following lexical action template for proper names in the text-based
format as you would find in action specification files:

A Lexical Template

proper(NAME,PERSON,CLASS)

IF ?ty(e)

THEN put(ty(e))

put(fo(NAME))

put(class(CLASS))

put(person(PERSON))

put(!)

ELSE abort

Note in the above how the place-holders, NAME, PERSON and CLASS are being used in the
action. These templates will be instantiated to fully fledged form, here with NAME, PERSON and
CLASS, replaced with actual values read from the lexicon. This is done in the very beginning when
the parser is loaded.

As noted, there’s one line per word in the lexicon. Each line is a tab separated set of values, with
the first value always being a word, the second the syntactic category - corresponding to the name
of the lexical template to be used for that word (e.g. ‘proper’ in the example above). These values
are then followed on the same line by the appropriate set of parameters/values for the place-holders
in the template. So for instance the following line in the lexicon,

john proper john s3 male
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would instantiate the above lexical template as:
IF ?ty(e)

THEN put(ty(e))

put(fo(john))

put(class(male))

put(person(s3))

put(!)

ELSE abort

8.2 Lexical Macros

It is often convenient to group a sequence of atomic actions together to form a single macro. This
is both for ease of reading of action specifications, and has psychological/cognitive justification
(see Cann (2010)). In lexical action specifications, macros, if defined, can be called/run, just like
atomic actions. Macros are loaded together with the lexical and computational actions, but from
a separate file, namely, lexical-macros.txt, as noted above. Lexical macros can take arguments
in a similar fashion. See any of the lexical-macro.txt files for examples.

8.3 The Grammar and Lexicon classes

These are the classes that read all the action templates from file, instantiate, and store them.
This is done in the very beginning when the parser is initialised. A Grammar object stores all the
computational actions. It is itself an ordered set of ComputationalAction objects. The Lexicon

class instantiates all lexical templates from the lexicon file, and stores the actions as a map from
words to a set of LexicalAction objects (a word may correspond to more than one lexical action,
e.g. ‘run’ which is both a noun and a verb). The classes are not complicated and should be
self-explanatory given the Java Documentation so we do not go into them here.

8.4 Some important pointers in action specification

• Put at least one empty line in between every action specification

• An IfThenElse action can be embedded inside another. If you’re using this, indentation is
crucial. There are examples in the resources already included. Follow those.

• Avoid extra spaces in general, particularly between the arguments of a lexical templates, e.g.
avoid proper(NAME, PERSON, CLASS), instead use proper(NAME,PERSON,CLASS).

• Arguments of lexical templates should all be capitalised as above, e.g. CLASS, not Class

• For rule meta-variables, always use upper case letters starting from X. But this can be modified
in the code.

• For formula meta-variables, always use upper case letters starting from U.

• For lambda formulae, always use upper case letters for the bound variables.

• For existentially quantified variables, always use the lower case letter ‘x’ ONLY.

25



References

Blackburn, P. and W. Meyer-Viol (1994). Linguistics, logic and finite trees. Logic Journal of the
Interest Group of Pure and Applied Logics 2 (1), 3–29.

Cann, R. (2010). The Dynamics of Lexical Interfaces, Chapter Towards an account of the English
Auxiliary System: building interpretations incrementally.

Cann, R., T. Kaplan, and R. Kempson (2005). Data at the grammar-pragmatics interface: the case
of resumptive pronouns in English. Lingua 115 (11), 1475–1665. Special Issue: On the Nature of
Linguistic Data.

Cann, R., R. Kempson, and L. Marten (2005). The Dynamics of Language. Oxford: Elsevier.

Cann, R., R. Kempson, and M. Purver (2007). Context and well-formedness: the dynamics of
ellipsis. Research on Language and Computation 5 (3), 333–358.

Cooper, R. (2005). Records and record types in semantic theory. Journal of Logic and Computa-
tion 15 (2), 99–112.

Davidson, D. (1980). Essays on Actions and Events. Oxford, UK: Clarendon Press.

Gargett, A., E. Gregoromichelaki, R. Kempson, M. Purver, and Y. Sato (2009). Grammar resources
for modelling dialogue dynamically. Cognitive Neurodynamics 3 (4), 347–363.

Gregoromichelaki, E. (2006). Conditionals: A Dynamic Syntax Account. Ph. D. thesis, King’s
College London.

Kempson, R., W. Meyer-Viol, and D. Gabbay (2001). Dynamic Syntax: The Flow of Language
Understanding. Blackwell.

Meyer-Viol, W. (1995). Instantial Logic. Ph. D. thesis, University of Utrecht.

Otsuka, M. and M. Purver (2003). Incremental generation by incremental parsing. In Proceedings
of the 6th CLUK Colloquium.

Purver, M., R. Cann, and R. Kempson (2006). Grammars as parsers: Meeting the dialogue chal-
lenge. Research on Language and Computation 4 (2-3), 289–326.

Purver, M., E. Gregoromichelaki, W. Meyer-Viol, and R. Cann (2010). Splitting the ‘I’s and
crossing the ‘You’s: Context, speech acts and grammar. In Aspects of Semantics and Pragmatics
of Dialogue. SemDial 2010, 14th Workshop on the Semantics and Pragmatics of Dialogue.

Purver, M., C. Howes, E. Gregoromichelaki, and P. G. T. Healey (2009). Split utterances in
dialogue: a corpus study. In Proceedings of the 10th Annual SIGDIAL Meeting on Discourse and
Dialogue (SIGDIAL 2009 Conference).

Purver, M. and M. Otsuka (2003). Incremental generation by incremental parsing: Tactical gen-
eration in Dynamic Syntax. In Proceedings of the 9th European Workshop in Natural Language
Generation (ENLG).

Sato, Y. (2010). Local ambiguity, search strategies and parsing in Dynamic Syntax. In E. Gre-
goromichelaki, R. Kempson, and C. Howes (Eds.), The Dynamics of Lexical Interfaces. CSLI. to
appear.

26



Schlangen, D. and G. Skantze (2009). A general, abstract model of incremental dialogue processing.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009).

Skantze, G. and A. Hjalmarsson (2010). Towards incremental speech generation in dialogue systems.
In Proceedings of the SIGDIAL 2010 Conference.

Skantze, G. and D. Schlangen (2009). Incremental dialogue processing in a micro-domain. In
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009).

Yngve, V. H. (1970). On getting a word in edgewise. In Papers from the 6th regional meeting of
the Chicago Linguistic Society.

27


	How to read this document
	Introduction
	Dynamic Syntax
	Parsing
	The parsing process [3]
	Graph representations
	Parsing in Context [3.2]
	Generation

	Integrating Type-Theory with Records (TTR)
	Dialogue System
	Mapping TTR record types to domain concepts incrementally


	Parsing and generation: The ds package
	The Parser class
	Adjusting the state

	Parsing in Context: ContextParser
	Generation

	Trees: The ds.tree package
	The Tree Class
	Tree Subsumption

	Node Addresses and Modalities
	Node addresses
	The NodeAddress class
	Modal Operators and Modalities


	Labels: The ds.label package
	Embedded Labels: the EmbeddedLabel and EmbeddedLabelGroup
	Contextual Labels: ContextualTreeLabel and ContextualActionLabel
	Quantification and Scope-dependency labels

	Formulas: the ds.formula package
	Actions: the action package
	Atomic Actions
	The If-Then-Else Action: the IfThenElse class
	Meta-variables in DS: the ds.action.meta package and the MetaElement class
	WARNING: the equals method sets meta-variable value
	A potential source of confusion: the instantiate method
	The exec method in IfThenElse class and the Backtracker


	Guilde to Action Specification
	Structure of the lexicon and lexical templates
	Lexical Macros
	The Grammar and Lexicon classes
	Some important pointers in action specification


