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ARTICLE INFO ABSTRACT

Keywords: The detection and positioning of unmanned aerial vehicles has become essential for both automation and
Positioning system surveillance tasks, in recent years. The design of accurate drone localization systems is challenging, especially
Dr‘;“e in cluttered environments, where the target may be partially or even completely obscured. This paper proposes
Radar

a precise detection and 3D localization system for drones, by means of a millimetre wave radar. Drone
locations are estimated from spatial heatmaps of the received radar signals, which are obtained by applying
the super-resolution MUSIC algorithm. These estimates are improved by analysis of the micro-Doppler effect,
generated by the rotating propellers, which aids detection in poor visibility conditions. A novel Gaussian
Process Regression model is developed, in order to compensate for systematic biases in the radar data. The
complete system produces accurate estimates of the target range and direction, and is shown to outperform

Millimetre wave

direct spectral analysis methods.

1. Introduction

The development of reliable drone detection systems has become
important, owing to the routine use of unmanned aerial vehicles (UAVs)
in daily life. In recent years, these devices have been used for surveil-
lance (Boddhu et al., 2013), logistical (Kellermann et al., 2020), audio-
visual (Harvard et al., 2020) and military (de Swarte et al., 2019) tasks.
All of these applications require a positioning system of some kind,
which provides input to the process for both detection and navigation
purposes. However, most of the research on this topic is not primarily
concerned with establishing the precise absolute position of the drone
with respect to a previously known location, but rather with general
detection and tracking. For instance, one of the greatest concerns so
far has had to do with the security risks posed by these devices,
as discussed in Samland et al. (2012). In particular, much research
has focused on detecting and tracking potentially hostile devices, as
described in Guvenc et al. (2018, 2017) where the authors present a
system consisting of a ground radar and a monitoring drone fleet with
the final objective of interdicting malicious UAVs.

Another well-known goal is autonomous guidance, given that the
device may travel beyond the communication range of the opera-
tor (Kendoul, 2012). In this regard, the basic problem of global posi-
tioning has already been solved by the inclusion of a Global Navigation
Satellite System (GNSS) signal receiver for the most advanced drones,
as can be seen in the features of several current off-the-shelf devices,
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such as Phantom (DJI, 2020), or in works such as Tahar and Kamarudin
(2016), in which some corrections are applied to the data delivered by
the GNSS chip, based on a prior statistical study of the noise and bias
in these measurements.

Localization is still problematic in GNSS-denied environments, and
in local contexts where an accurate position could be mandatory.
The applications developed for these purposes can be tackled either
in a dynamic way, as presented above, where other drones carrying
different sensors provide assistance to the central system, or directly
from the ground, i.e. from a known fixed location, in which the sensor
is installed.

The second strategy requires neither an extensive infrastructure,
nor the calibration of dynamic reference systems. Therefore, this pa-
per proposes an accurate detection and 3D localization system for
drones, designed for cluttered environments, using only a single com-
modity millimetre wave (mmWave) radar, in a fixed location. The
general setup is illustrated in Fig. 1. The device uses short-wavelength
electromagnetic signals, which enables detection through a variety of
materials, even in optically challenging environmental conditions, such
as darkness, fog, or smoke. These sensors are lightweight, and can easily
be mounted inside a plastic car bumper, a security camera housing,
or a robotic or drone housing (Ferguson et al., 2018). In general,
mmWave technology permits the use of very small antennas, enabling
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Fig. 1. Overview of the proposed system. The radar is positioned in order to cover
as much flying space as possible. In this example, it is placed near the ceiling and
slightly tilted towards the ground, in order to increase the RCS (radar cross-section) of
the drone.

integration within the sensing unit, and greater system miniaturization.
These characteristics make mmWave technology appropriate for use
in constrained environments, such as warehouses or urban delivery
areas (Alwateer & Loke, 2020).

The contributions of this paper are as follows. A new way to
enhance the detection of drones in mmWave radar data is presented
in Section 3.1. Section 3.2 develops new univariate and multivari-
ate Gaussian process (GP) regression models, for accurate range and
direction estimation. Section 3.3 proposes a spline-based dimension
reduction method, to be used in conjunction with the GP regression.
A combined mmWave radar and camera system, which allows ground-
truth optical measurements to be recorded, is described in Section 4.1.
Our basic localization algorithms are evaluated in Section 4.2. The
more sophisticated GP regression models are evaluated in Section 4.3.
We report the final configuration of an effective UAV system, based on
our experiments.

The organization of this paper is as follows. The relevant drone
detection and localization systems are reviewed in Section 2. The

Appendix describes the main characteristics of the mmWave radar
system, and the initial signal processing tasks. The proposed positioning
algorithm is developed in Section 3. The complete system is evaluated,
and the results are analysed, in Section 4.

2. Drone localization methods

A wide range of different technologies have been applied for detec-
tion and localization of drones. This section presents a brief review of
the topic, including acoustic, optical, and radar modalities.

2.1. Acoustic methods

The first technology to be considered is that of acoustic analy-
sis. Several works have specialized in detection of the characteristic
propeller ‘buzz’ (Benyamin & Goldman, 2014; Busset et al., 2015).
However, the applicability of this approach is limited by the cost of
a complex microphone matrix, and by its high susceptibility to adverse
weather conditions (e.g. wind or rain). Other solutions involve the
fusion of different sensors, as proposed in Paredes et al. (2017), where
an ultrasonic device estimates 2D position and a time of flight (ToF)
camera provides the flying altitude.

2.2. Optical methods
Optical systems use one or more cameras to detect drones, based

on methods from computer vision. This approach is one of the old-
est, as described in Amidi et al. (1999), in which a camera looking
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at the ground is mounted in a drone. The position is estimated by
detecting known visual markers. Somewhat later, new marker-based
systems emerged, for use with micro aerial vehicles (MAVs) (Boudjit
& Larbes, 2015; Jiménez Lugo & Zell, 2014; Masselli & Zell, 2012;
Santana et al., 2014; Vidal et al., 2017). A more recent work presents an
accurate detection and tracking system for MAVs by means of a single
ToF camera (Paredes et al., 2020). Nonetheless, while camera-based
systems produce high resolution images across a wide field-of-view
(FOV), detection relies on measuring reflected light. This makes them
very susceptible to occlusions (by objects crossing the line of sight) and
to scattering (by airborne particles such as fog or smoke).

2.3. Radar methods

Radar systems have been used to avoid the drawbacks of acoustic
and optical technologies. The main difference from the former is in the
signal that is used: radio frequency (RF) waves. Due to its wavelength
and beam spread, a radar can return multiple readings from the same
transmission, and generate a spatial representation of the environment.
By capturing the reflected signal, a radar system can determine range,
velocity and direction. An example can be found in Multerer et al.
(2017), in which the authors propose the use of a 3D-type radar to
track drones. To differentiate between dangerous and non-dangerous
targets, they have their movements evaluated in real time and, if the
algorithm determines it, a directional antenna generates a WiFi signal
that jams the control of the device.

As mmWave-hardware has improved, more complex tasks have
become feasible for these devices. The operation of a 2D detection and
tracking system for UAVs, using mmWave, is explored in de Haag et al.
(2016), where a comparison with a light detection and ranging (LiDAR)
system can be found. The authors are able to detect drones at a distance
up to 25m, although clutter at less than 5m prevents a proper detection.
Besides, when a UAV is intended to be detected at low grazing angles,
the multipath effect due to land clutter could mask the direct reflections
from the device, as explained in Ezuma et al. (2019). A detailed model
of this effect is presented in this work, where the simulations show how
the optimal detection performance of mmWave radar depends on the
RCS of the targeted MAV, the radar properties, and the properties of
the land clutter. Other works, including Dogru et al. (2019) and Dogru
and Marques (2020), focus on pursuing one drone with another one.
The authors make use of a 2D radar, mounted in the follower, in order
to detect the target drone. The missing axis information is extracted
through geometric calculations, by estimating the first drone position.

In order to detect and identify UAVs via a radar device, it is often
useful to take into account the micro-Doppler effect. A radar target
will exhibit a Doppler frequency shift associated with its bulk motion
(i.e. the velocity associate with a drone’s flight path), but will also
experience micro-motion dynamics — such as mechanical vibrations or
rotations — which induce micro-Doppler modulations on the returned
signal (Chen et al., 2006). The unique micro-Doppler signatures of a
radar target can provide characteristic information about its properties
and actions. This has been used to improve drone detection, such as
in Caris et al. (2016) where two possible approaches for perimeter
surveillance are presented. They cover distances from 10m to several
hundreds metres, and they assert that the velocity (modulus and direc-
tion) can be estimated by analysing the micro-Doppler effect. This effect
has been also applied for classification of drones (Fioranelli et al., 2015;
Jian et al., 2017; Nanzer & Chen, 2017; Sun et al., 2018; Tahmoush,
2015), because the Doppler signature can be considered unique for
every target, and to discriminate them from other potential flying
targets, like birds, owing to the propeller rotation signal (Ezuma et al.,
2019; Rahman & Robertson, 2018).

None of these works have addressed a precise drone detection and
positioning in cluttered environments, where the clutter (including
other non-drone targets) can make the detection unreliable or even
impossible. These considerations are important, owing to the increasing
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use of drones in complex environments, such us warehouses and urban
delivery areas. Hence, this paper proposes an accurate 3D localization
system for UAVs in these scenarios, based on a novel approach that
applies Gaussian Process Regression (GPR) to the radar information,
after improving target detection via the micro-Doppler effect generated
by the propellers. Wang et al. (2018) took a related approach to
direction of arrival estimation, from radar data, using Support Vector
Regression (SVR). Our perspective is similar, but we obtain full 3D
localization, and we use GPR rather than SVR. We argue that the GPR
method has significant advantages, because it provides a probabilistic
model of the data, including confidence intervals for prediction.

3. Proposed localization algorithm

The proposed mmWave radar localization system uses the following
data, which is provided by the device: a 3D range-frame array Q, in
conjunction with a 2D range-Doppler array Qp. A non-negative 3D
array P, representing the signal intensity at any point [r, 8, ¢)], can be
obtained directly from the magnitude |[FFT(Q)|. In this work, however,
we use the multiple signal classification (MUSIC) algorithm, which
involves the appropriate steering matrix A, for the antenna layout (see
Section 4.1). Hence the intensity array is computed as

P < [MUSIC(Q,A)]| . €y

The basic principles of radar signal processing (including FFT and
MUSIC methods) are summarized in the Appendix.

If one of the angular coordinates is fixed, then the resulting 2D
slice through P corresponds to plane through the centre of the antenna,
as indicated in Fig. 2. In the case of the Doppler array, it suffices
to compute the absolute value, in order to obtain a range-velocity
heatmap:

Py < |Qp| (3]

The next step in the proposed localization algorithm is to perform
pointwise background subtraction

P =P-E[P]g 3
P, =P, —E[Ppls 4

where P’ and P;) are the signals relative to the corresponding temporal
averages, denoted by E[-]s. The latter are taken over a reference time
interval S = [sg,s,], during which the target is absent, and the scene
is static. This step reduces the effects of environmental clutter, by
removing the background component from the signal.

For clarity of exposition, we now regard the 3D array P’ and the 2D
array P’D, from (3) and (4), as non-negative scalar functions P’(r, 0, ¢)
and P;)(r, v), respectively. This notation also allows us to consider, for
example, bilinear interpolation of the data at non-integer coordinates
(although we do not require it here). The 2D azimuth and elevation
maps P,;(r’ 9) and PI’,:(r, ¢), in the analogous notation, can be obtained
by taking the maximum over one angular dimension, in each case:

P (r,0) = max P'(r,0,0), ¢ € [brin Pmax s )

PL(r.¢) = max P'(r,0,¢), 0 € [Omins Omaxl- (6)

The resulting 2D maps are separately normalized, by the maximum
value, in each case. A similar procedure is used to obtain a 1D function
of the scene range:

max Pi(r.0). 6 € [pin. O],

Pl(r) = /
m(;lx PE(r’ ¢), ¢ € [‘bmin’ ¢max]‘

)

Note that the two possibilities are equivalent: in both cases, P'(r) is
the maximum over the same spherical wedge of directions (the only
difference is the ordering of the angular max operations).
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4

Fig. 2. Left: elevation planes through the original data array P(r, 0, ¢). A single azimuth
map P)(r,0) is obtained by maximizing over ¢, for each pair of coordinates (r,6), as
indicated (5). Right: analogous azimuthal planes. A single elevation map P,(r,¢) is
obtained by maximizing over 6, for each pair of coordinates (r,¢), as indicated (6).
The angular ranges correspond to the antenna array limits of +60°, as specified by the
radiation pattern’s main beam (while the coarse angular sampling is for illustration
only).

3.1. Direct maximum estimation

The actual range of the target can be tentatively estimated from the
maximum value of P’(r). However, the detection can be strengthened
by considering the P, heatmap. When, in addition to the constant
Doppler frequency shift induced by the bulk motion of a radar target,
the target or any structure on the target undergoes micro-motion
dynamics, such as mechanical vibrations or rotations, the micro-motion
dynamics induce Doppler modulations on the returned signal, known as
micro-Doppler effects (Chen et al., 2006). In the case in question here,
the range profile can be also given by:

Pp(r) = mean P (r,v), 0 € [Unin> Umax]- ®)

Then, the range coordinate r, is obtained as:

argmax Pp(r) if max Pp(r) > I,
r, = r
argmax P'(r) otherwise,
r

€)]
where [ is a threshold just to verify that this particular Doppler effect
is strong enough for the peak to be considered as a possible detection.
If the range dimension is reduced as follows

Pl (v) = max Pp(r,v),  F € [Foins Fnaxls (10)
r

then the radial velocity v, can be estimated according to

v, = argmax P'(v) an
U

assuming that the target velocity is that of the main intensity peak in
this dimension.

Recall, from Eq. (9), that r_ is the estimated range of the target. Two
1D angular profiles can now be taken at this range, in order to estimate
the direction of the target. Indeed the maximum values of these profiles
can be used as simple estimates [6,, ¢,] of the true target direction
[0, @]

0, = arg max P(r,.0) (12)
b, = argmde)lx Py(ry. ) 13)

However, in order to achieve higher accuracy, a GP regression will be
applied to the profiles defined in Egs. (5) and (6). The resulting system
learns to understand the radar data, based on a set of training examples.
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3.2. Gaussian process regression

The previous section described a simple target localization method,
based on direct peak extraction, in the background-subtracted response
signals. In practice, the direct range estimate is relatively accurate,
as can be deduced from Eq. (A.2), where a resolution of 3.75 cm
is achieved for a typical bandwidth of 4GHz. The angular maxima,
however, are much less reliable, as extracted from Eq. (A.6), where
can be seen how that relationship is non-linear, so that the greater the
angle, the worse the resolution. We therefore propose an alternative lo-
calization method, in which the entire angular profiles, at the estimated
range, are used as inputs to a supervised learning algorithm.

Specifically, we obtain azimuth and elevation estimates, by analogy
with Egs. (9) (12) and (13), from three GP regressions, each taking
the concatenated 1D profiles [P'(r), P}(r,.6), Pp(r,,¢)| as inputs. In
general, the GP kernel representation may be more effective if the
dimensionality of the problem is reduced somewhat. This is possible
here, because the data have limited resolution in range (A.2) and
azimuth/elevation (A.6). In particular, it will be shown that the az-
imuth and elevation profiles [P/"(r 0, PL(r +,¢)] can be compactly
represented by their coefficients [a, €] with respect to a fixed spatial
basis. We use a standard B-spline representation, as described in Sec-
tion 3.3. This leads to the following GP regression estimates, by analogy
with (12) and (13):

0, < GPRy(r,,a,¢€) as
¢ < GPRy(r,, a. ). (15)

We hypothesize that the GPR estimates [0,, ¢, ] are significantly better
than the direct maximum estimates [0,,¢,] in (12) and (13), for two
reasons. Firstly, the relationship between the target direction and the
angular data is allowed to be more complex: for example, the peak may
be asymmetric, or multimodal. Secondly, the estimator is allowed to be
directionally variable, in both dimensions: for example, it is possible to
compensate for attenuation, as the true direction [©, @] approaches the
angular limits of the sensor.

The GPR method has the following advantages, in this context.
Firstly, it produces sensible estimates outside the range of the avail-
able data. Secondly, the model has a clear probabilistic interpretation,
including confidence intervals for prediction. Thirdly, the parameteri-
zation is physically sensible, based on assumed smoothness of the signal
distortions. Finally, the estimation process is exact, and very efficient
in this application. We now consider the computational form of the
estimates (14) and (15), in the standard GP framework (Rasmussen &
Williams, 2006).

Let & = [r,,a, €] be the representation of a radar reading, from
which we wish to obtain a direction estimate [6,,¢,], as in (14) and
(15). A suitable GP model can be estimated from i = 1, ..., L training
locations of the target, with known azimuths and elevations ©; and @;.
The corresponding RF measurements are concatenated in the L training
vectors &;. The affinity of two such readings can be represented by the
exponentiated quadratic kernel:

k(&.&;) = r*exp(-3 d*(§,,£,)) where
5 —1

2 16)
Peep=e-¢" | 7

& -¢)]

Yo

is the Mahalanobis distance between &; and &;. The characteristic scale
of the range representation is set by y? = [y2,...,7%], and similarly
for yz and yé, where the lengths of the constant vectors correspond to
the partitioning of ¢ into range and angular components. The overall
scale factor y? represents the variance of the estimated function. The
kernel parameters can be estimated automatically from the data, using
standard fitting routines (Rasmussen & Williams, 2006). It is also
possible to constrain the model, e.g. by fixing y, = yy = 14, Or vy = 14;
these simplifications will be evaluated in Section 4.
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All applications of kernel (16) to the training data from L training
locations can be encoded by an L x L symmetric matrix K, with entries

Kij = k(§i,§j)‘ a7)

The regularized kernel matrix L is then defined, in the standard
way (Rasmussen & Williams, 2006), where ¢? is the noise variance:

L=K+c’L (18)

Let © and @ contain the coordinates ©; and @;, respectively, of the
L training locations, with corresponding RF representations &;. The
optimal azimuth and elevation estimates (14) and (15), are obtained
from the standard GPR formulas (Rasmussen & Williams, 2006):

0,6 =k@&L'0 19)
$.(&) =k L™'® (20)

where & contains the newly observed RF data, and the ith entry of
the L x 1 vector k(¢§) is given by k(&;, &). It is also possible to com-
pute the conditional probability of each estimate, given the training
data (Rasmussen & Williams, 2006). For example,

0,10 ~ N<k(§)L_'9, k(. &) —k(é)L_lkT(é)) 2D

where N '(u,0) is a 1D Normal distribution, and the analogous formula
holds for the elevation estimate, ¢, | ®@.

3.3. B-spline representation

The angular estimates [0, , ¢, ] could be obtained by applying GP re-
gression directly to the concatenated profiles [P’ ), PA(’ 40 0),
PI’_:(r +,¢)], as described in Section 3.2. In practice, we use lower-
dimensional azimuth and elevation representations [a, €], in Egs. (14)
and (15), with & = [r,,a, €] being the complete representation, as
indicated in Section 3.1. This dimension reduction process improves
the performance of the GPR method, as will be shown in Section 4. In
addition, there is a computational benefit when constructing the kernel
matrix (16), although this is not a major concern in the present context.

We use a B-spline representation, which has the advantages of local
support and numerical stability. Let B be the M x N matrix of N
cubic B-spline basis functions, with optimally located knots (de Boor,
1978). The azimuth and elevation profiles are approximated by Ba
and Be, respectively, where the coefficient column-vectors a and e
are estimated by standard least-squares methods. If the rows of B are
denoted by b;, then the approximation can be written more explicitly
as

Pi(r.0) x b (22)
Pl(ry. ) ~ b€ (23)
where the index i = 1,..., M ranges over the angular dimension of

the corresponding RF data array. The appropriate dimensionality N of
the spline basis B is an empirical question, which will be addressed in
Section 4. Fig. 3 shows an example of dimension reduction for a typical
angular profile; in this case the dimensionality is reduced from M = 63
to N =12.

4. Localization experiments

This section presents a complete evaluation of the proposed al-
gorithm. Section 4.1 describes the experimental setup, including the
relevant radar configuration parameters. Next, Section 4.2 shows how
initial target detection can be performed, by background subtraction
and direct maximum estimation. Finally, Section 4.3 evaluates several
variations of the proposed Gaussian Process approach.
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Fig. 3. Representation of an example azimuth profile (a), in a B-spline basis (b). The basis functions (columns of B) are individually multiplied by the corresponding coefficients
@ in (c). In this particular example, the profile P;(r,,6) goes from 63 samples in (a) to the 12 dimensions of the B representation shown in (d).

4.1. Experimental setup

All experiments were performed using a mmWave radar ‘system
on a chip’ (IWR6843ISK-ODS ES2.0, Texas-Instruments (2020)), a low
power device operating in the 60-64 GHz frequency range, with a
+60° field of view, in both azimuth and elevation. The antenna module
(Fig. 4) comprises three TXi transmitters, separated by a distance of 1,
and four RXi receivers, separated by a distance of A/2 (hence a total
of 12 virtual antennas). The antenna pattern has relatively low direc-
tivity, with 3 dB beamwidth of around 100° in the azimuthal plane
and 70° in the elevation plane. Low directivity is beneficial for short-
range environments, as this makes a wide field-of-view possible, and
high gain is not necessary to overcome signal attenuation or reduced
resolution at long distances. The performance of the device has been
characterized in detail by the manufacturer, Texas-Instruments (2021).
Note that the design allows both azimuth and elevation data to be
obtained, given that the signals received at a subset of the antennas
(marked with asterisks in Fig. 4) are phase-shifted by 180°. This
information is used to form the steering matrix A, as described in .

The radar device is attached to a movable clamp, together with
a digital camera, as shown in Fig. 5. The camera is used to provide
estimates of the target ground truth [0, ®], using the standard Aruco
markers (Garrido-Jurado et al., 2016; Romero-Ramirez et al., 2018).
Two measures have been taken to improve RF reflection from the
MAUVs. Firstly, the sensor was mounted above the flight area, pointing
down at the body and propellers. A custom aluminium trihedral retro-
reflector was also attached to the drone, as can be seen in Fig. 6.
The main role of the reflector is to increase the maximum detectable
range, in order to enable a more complete evaluation of our proposed
algorithms. We used a Parrot Mambo Minidrone, with a wingspan of
13.5 cm, in our experiments, which were conducted in a relatively

®

RX1

®

RX4

RX2*

®

TX1

RX3*

®

Elevation

RX1 RX4

RX2*

TX3

RX3*

Azimuth

Fig. 4. Antenna layout for the INR6843ISK-ODS. The steering matrix A is obtained
by considering this reception scheme.

small room (approx. 6mx4m), with typical furniture, including shelves,
desks, chairs, etc. This environment is relatively challenging, owing to
the presence of clutter, and the proximity of reflective walls. The radar
was appropriately configured, as summarized in Table 1.

4.2. Preliminary analysis

This section contains the results of our preliminary experiments,
which were designed to test the basic localization algorithms developed
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Fig. 5. Experimental device. The antenna module is visible at the top, while the camera
is fixed underneath.

Fig. 6. Parrot Mambo Minidrone, with a trihedral retro-reflector for the RCS, for
increased RF detectability.

Table 1

Main chirp parameters, adapted to the present experimental setup.
Parameter Value
Initial frequency 60 GHz
Bandwidth (B) 3.6 GHz
Frequency slope (B/T) 150 MHz/ps
ADC resolution 128 bits
ADC sampling frequency 6500 kS/S
Chirps/frame 48

in Section 3.1, using the setup described in Section 4.1. The basic
strategy is to estimate the ground truth position of the drone from
Aruco markers, which are known to provide reliable estimates (Garrido-
Jurado et al., 2016; Romero-Ramirez et al., 2018), assuming that the
target is optically visible (which may not be the case, in subsequent
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RF applications). We emphasize that the camera system is only used
to provide initial reference inputs, for training the Gaussian Process
models. The resulting radar system can then operate independently,
even in optically opaque environments (or those in which cameras are
forbidden, for privacy reasons).

We begin by validating the background subtraction method, de-
scribed at the beginning of Section 3. We find that this simple method
performs well, as shown in Fig. 7. As can be seen, clutter and reflection
would mislead the localization process. However, removing static parts
of the signal greatly reduces this problem.

As described in Section 3.1, the second way to facilitate target
detection is to consider the Doppler range profile, defined in Eq. (8).
The corresponding estimate in this equation makes use of the drone
bulk velocity, as well as the micro-Doppler effect generated by local
motion of the propellers. In particular, the side-lobes also contribute to
the main peak in Pb(r) from Eq. (8), which makes the detection more
reliable. Fig. 8 illustrates how this process performs. The peak of the
range-azimuth heatmap (Fig. 8a) is around 3m, as shown by the blue
profile in Fig. 8c. Meanwhile, the peak of the range-velocity profile,
shown in red, is at the correct location of 1m.

We now evaluate the accuracy of the direct maximum approach,
described in Section 3.1, using the camera-based ground truth, as
described above. A total of L = 50 different locations were used, with
ranges between 1 and 4 m, azimuth angles between —50° and 50°,
and elevation angles between —20° and 20°. These aerial sites cover
most of the available flying space. All data were collected in a static
environment, in order to make the ground truth acquisition with the
camera as reliable as possible. The localization results are shown in
Fig. 9, using the spherical [r,0, ¢] coordinates that are appropriate for
the radar device. It can be seen that the direct range estimates are in
accordance with the ground truth, with 5.45 cm root mean square error
(RMSE). The angular estimates are less accurate, and a positive bias
is apparent in the elevation estimates. This systematic effect can be
attributed to miscalibration of the device.

4.3. Regression models

Next we evaluate the accuracy of the GP regression model, devel-
oped in Section 3.2. Recall that (N x 1) B-spline coefficient vectors a
and e are computed for the azimuth and elevation profiles at range r,.
The complete RF representation & = [r,,a, €] is therefore (1 + 2N)
dimensional. We evaluate a range of possible choices, N = 8, 12, 20.
All of the RF representations &; are randomly divided in two groups:
70% training data and 30% test data. The training group is used to
build the GP regression estimator, as described in Section 3.2.

The results are shown in Fig. 10, for comparison with Fig. 9. The
red and blue points represent the estimates for training and test data
respectively. Firstly, it can be seen that the training data is accu-
rately represented, as would be expected. More importantly, the test
estimates are more accurate than those in the direct maximum, as
quantified by the RMSE values in Table 2. These values were computed
by averaging ten models, created with different random training/test
groupings (the figures show example results, from a typical run). In
detail, the range, azimuth and elevation errors of the direct maximum
method are 5.45 cm, 7.60° and 11.46°, respectively. The proposed GP
regression, based on the B-spline representation, achieves substantially
lower errors of 3.40 cm, 4.54° and 5.13°. It is clear from Fig. 11 that the
GP regression method is able to compensate for the calibration biases
that affect the locations of the maxima in Fig. 9. The RMSEs have been
highlighted (bold) in Table 2.

We performed additional experiments, to help understand the main
results, all of which are shown in Table 2. Apart from the direct
maximum strategy already discussed, two kinds of GP regressions are
evaluated. Firstly, a univariate GPR in which the input for each model
is taken separately. These inputs can be the maxima [r ], [6,], [¢,],
calculated by the direct strategy. Secondly, a multivariate GPR is
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Table 2
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RMSE for range, azimuth and elevation estimates obtained by applying direct maximum estimation, univariate GPR (only possible for separate inputs) and multivariate GPR for
both separate and concatenated inputs, considering the whole profiles or their reduced versions.

Direct maxima Univariate GPR Multivariate GPR

[r 106,119,] LAIAIA [pl[a] (€] [Py, Py, Pl [p,a €l [ry,a.€l
N =20 N=12 N=8
(712795 74] 2N Yrop
Range (cm) 5.45 340 4.61 4.06 4.29 4.06 4.08 4.19 4.20 3.92 4.46
Azimuth (°) 7.60 6.93 5.76 5.78 5.99 5.17 5.20 454 5.03 4.79 5.07
Elevation (°) 11.46 5.94 5.73 5.89 6.02 5.71 6.03 513 5.42 5.15 6.05
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Fig. 7. Background subtraction example for azimuth (a,c), and elevation (b,d) heatmaps. The red cross indicates the true position of the target. Environmental clutter produces
false peaks in (a,b), which dominate the target. After background subtraction in (c,d), the dominant peak is close to the true position (estimated by the camera system). The

residual biases are modelled by Gaussian Process regression.

applied with different inputs. The first one is carried out with the
separate profiles [P’(r)], [P/"(r IR [Pl’_:(r 4. ®)], extracted as proposed
in Section 3.1, or their reduced versions [p], [a], [€]. A general im-
provement can be observed for all of them, being noteworthy the one
achieved for range. The second one is applied to the concatenated
raw profiles, [P’(r), Pg(r+, 0), Pé(r+, (;b)], of dimension [120, 63, 31], then
the azimuth and elevation RMSEs rise to 5.99° and 6.02°. The method
with this input does not provide a clear improvement over the last
method. However, if the input consists in a concatenation of the re-
duced versions [p, a, €] or [r, @, €], then a general RMSE improvement
better than for univariate or separate multivariate GPR is found. This
suggests that the GP kernel representation works more effectively in
the lower-dimensional B-spline space.

Furthermore, we have completed the study by varying the free-
dom with which the GP routine can optimize the kernel parameters
in Eq. (16). The overall variance y? of the estimated function must

be estimated in all cases. The length scales for range, azimuth and
elevation can be constrained to a single number y,,,, @ pair [7,, 7541, 0T a
triple [y,, 79, 74]- The performance of the GP regression was comparable,
across these variations, as indicated in Table 2. Overall, the most
flexible model performed best, in conjunction with an intermediate
spline dimensionality, of N = 12.

A summary of the results, plotted in Cartesian coordinates, can be
seen in Fig. 12. In most cases, the GPR estimates (blue points) are closer
to the ground truth (grey points) than those extracted from the direct
maximum method (red points), as expected. The overall RMSEs in space
are 22.86 cm for the first method and 31.84 cm for the second.

5. Conclusions

This paper has presented a novel 3D localization system for UAVs,
flying in cluttered environments, based on mmWave radar signals.
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Fig. 8. Example use of micro-Doppler information to assist target detection. The peak
of the range profile extracted from the range-azimuth heatmap (top), around 3m, does
not correspond to the true target range. However, the peak of the range-velocity data
(middle) is located at the true range of the target (bottom).

This is a prototype for a low-cost and low-power system, which could
function in poor visibility conditions, such as fog or smoke. The ability
to avoid recording conventional images has additional privacy benefits,
in urban settings, for example.

We have shown that conventional algorithms, including background
subtraction and spectral analysis, can be used to estimate the range of
a drone. The additional value of micro-Doppler signals, generated by
rotors and propellers, has also been demonstrated. A novel Gaussian
Process regression method has been used to refine the range and
the angular localization of the target. The importance of performing
dimension reduction, before training the regression model, has also
been established. The improvement in the RMSE is approximately 3°
for azimuth, 6° for elevation, and 2cm in range, with respect to direct
maximum methods. Most importantly, the Gaussian Process regression
is able to compensate for any mis-calibration of the radar system, which
is an important consideration when using commodity devices. Our

Expert Systems With Applications 185 (2021) 115563

experiments also indicate that this approach is robust to environmental
clutter. Future work will investigate the performance of these methods
in dynamic environments.
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Appendix. Radar signal processing

The fundamental concept in radar systems is the emission of a
signal, and its reception after being reflected from the surrounding
objects. Specifically, a frequency modulated continuous wave (FMCW)
radar is used in this work, in which a continuous chirp-like signal
is employed to synthesize a wide bandwidth, and thus a high range
resolution.

The radar working principles are depicted in Fig. A.13. First, a linear
chirp-like wave is emitted with a defined period 7. Once the echo has
been received (delayed version of the emitted wave), the signal passes
through an electronic mixer, together with the original version. The
output from this mixer is a new signal whose instantaneous frequency
comes from the subtraction of the emitted and received instantaneous
frequencies, and has a lower frequency f;z component that can be
extracted by applying a low pass filtering. This low frequency fip is
directly proportional to the distance r from the radar to the target:

T
T 8)

where c is the speed of light, and B the bandwidth swept by the emitted
chirps. The range resolution is given by:

r

c
Ar = 2B (A.2)
A detailed analysis of an FMCW radar working principle can be read
in Richards (2005).

Further target characteristics can be obtained with the emission of
two or more time-separated signals. A small change 4d in the distance
of an object results in a phase change 4¢ in the intermediate signal,
which can be expressed as:

Ap =2nfAr = 27[% 2“7‘1 = 47:A—/1d (A.3)

where A = ¢/ f is the wavelength. Thus, velocity v is obtained directly
from the phase measurement as:

o= ﬂ _ A

T. 4xT,
Here T, is the period between two consecutive chirps. Usually, several
chirps are emitted in a certain time interval T,, known as a frame, to

(A.4)
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in each case.

have a more reliable velocity measurement. As will be shown below,
this velocity will be used to strengthen the detection of targets in the
proposed algorithm.

Finally, extracting azimuth and elevation is necessary in order to
obtain the complete set of coordinate information. For this purpose, the
device (described in Section 4.1) is based on a multiple-input multiple-
output (MIMO) approach (Fishler et al., 2004; Li & Stoica, 2007), which
leverages improved processing capabilities to apply digital beamform-
ing for optimizing angular estimation, without the need for expensive
phased arrays. Thus, the angle of arrival (AoA) can be computed by
making use of multiple receivers:

_ et (240
0 (or ¢p) = sin <2”L> (A.5)

where L is the distance between the two receivers, assuming a planar
wavefront, and A¢ is now the phase difference caused by the delay in
the wave arriving at the different receivers. Note that this is a nonlinear
dependency, hence the smaller the AoA (closer to 0°), the more accu-
rate the estimates. Moreover, the angular resolution is dependent on
the number of antennas K as follows:

A
A0 > ———— A.6
~ KLcos@ (A-6)

In order to extract information about range, velocity, azimuth and
elevation, this paper employs spectral analysis techniques, such as fast
Fourier transform (FFT) and MUSIC (Schmidt, 1986), through which
the response versus range or angle can be estimated, and then the peaks
can be found to extract their values. These techniques are reviewed
below.

Direct spectral analysis

Firstly, it is necessary to extract fjz from Eq. (A.1), over the to-
tal amount of chirps emitted/received during each acquisition period
(frame), which provides data about the object range. This operation,
which involves an FFT (FFT, in Figs. A.14 and A.15), is performed by
the device. A second analysis must then be performed, in order to apply
Egs. (A.4) and (A.5) thereby obtaining A¢p and A¢. After the first FFT,
all elements of each column in the second matrix, both in Figs. A.14
and A.15, have the same magnitude, while the phases vary linearly.
Hence, these phases can be obtained by performing a further spectral
analysis, this time over each column. If this is calculated by taking into
account the chirps arriving individually at each antenna, then a range—
velocity heatmap is obtained (FFT, in Fig. A.14). On the other hand,
if it is done by arranging the signals according to the pair of antennas
that has emitted/received, using a steering vector/matrix (Chen et al.,
2010), a range-azimuth or a range-elevation heatmap is produced (FFT,
or MUSIC in Fig. A.15).

Subspace spectral analysis

A drawback of the FFT approach, when used to extract AoA in-
formation, is that the side lobes can mask the main peak. For this
reason, a different spectral analysis is applied here: the MUSIC al-
gorithm (Schmidt, 1986), which estimates the frequency content of
a signal by using an eigenspace method. The idea is based on de-
composing the input signal covariance matrix into signal and noise
components:
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1. Consider K antennas receiving M-signals x;:

M
x,(1) = Y5, (e =D 4y,

m=1

with0<i<K (A.7)
where s,, is the mth emitted signal out of M, z,, = Lcos(d,,)/4 is
the time shift for each antenna, and y; corresponds to noise.

2. The former equation can be expressed in matrix form:

X (1) 1 (D) 210)
2O _fa@) a0y a@] | 20 [+[27] s
x[(’(t) sM.(t) v/,;(t)
or, in general:
X=AS+V¥ (A.9)
3. The a(9,) are the steering vectors:
a@) =1 el ei2a2n (@) ejz;r(K—l)r,-(e,-)]T (A.10)
The covariance matrix for X can be written as:
R = E[xx"] (A11)

where E is the operator denoting the expected value (mean) of its
argument, and X" is the Hermitian transpose of X. It follows that:
R = E[(AS + ¥)(AS + ¥)"] = SE[AA"|SH + E[pyH]

(A.12)
= SR, S + 6’1 = SR S" + R,

10

where R, is the noise correlation matrix. The signal correlation matrix
R, is diagonal and can be expressed as:

E[ls, %] 0 0
2
R =aaf=| O E[I.S.z.| | 0 (A.13)
0 0 E[Isy?]

In practice, R is unknown, so it must be estimated from the received
signal as follows:

1. Estimate the (positive semi-definite) covariance matrix, based on
the M received signals:

| M
R=M2xm XE
m=1

2. Order the eigenvalues from highest to lowest (4, ..., Ay, ..., An),
and take the top M (with corresponding eigenvectors) as the
signal subspace E;. The remaining N — M components constitute
the noise subspace E,

(A.14)

3. Since the steering vectors corresponding to signal components
are orthogonal to the noise subspace eigenvectors, AE,EFA =0
for the angles corresponding to AoAs, then the MUSIC spectrum
is constructed by taking the following inverse:

1

PO) = ——
© AE,EHA

(A.15)

The AoAs of the multiple incident signals can be estimated by
locating the peaks in this equation.
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Conceptually, the MUSIC algorithm can achieve high frequency
estimation accuracy, but it involves searching for the spectral peak over
the full range frequency domain, which is computationally demanding.
This fact requires the code to be optimized in terms of execution time.

It is worth noting that we have considered only one moving tar-
get, and the presence of a second target complicates the extraction
of Doppler characteristics. We note that the beamforming techniques
(i.e. MUSIC) presented here can be applied to the MIMO radar outputs,
to isolate the Doppler responses of multiple targets. Using Eq. (A.9) a
beamformer can be represented as:

X' = WHX = WH(AS + ¥) (A.16)

where W represents the beamforming weight matrix, which is depen-
dent on the AoA and can be calculated using the previously presented
techniques as:

W=PO R A (A.17)

By selecting the beamforming weights to correspond to the AoA of a
specific target, and then applying those weights to the Doppler spec-
trum, it is possible to isolate the Doppler response of a specific target.
Furthermore, by properly designing the beamformer weight matrix, the
beam can be steered in the desired direction. This is useful because,
once the weights have been estimated for the range-angle information,
they can be applied to the Doppler response, in order to obtain the

11
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Maximum detection
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Fig. 12. Summary of results, plotted in physical coordinates. The grey cubes represent
the ground truth positions, with the diameter of the spheres representing the drone
size. The results from the direct maximum strategy are shown in red, and those from
the final proposed GPR method in blue. The line segments show the pattern of residual
errors. The small cube indicates the location of the radar device, and the line segments
show the pattern of residual errors.

Doppler spectrum for a specific angle. In this paper, only a single target
is considered, which simplifies the process.
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Fig. A.13. Radar operation: First, a wave is transmitted, and once the reflection is received, it is mixed with the generated chirp waveform. The resulting signal is low-pass filtered
(LPF), and amplified (Amp). Finally, the I/Q demodulator extracts the real and imaginary components from the IF signal, for input into an ADC.
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Fig. A.14. Spectral analysis required to get the range-velocity heatmap. At the beginning, every antenna receives N, signals in a determined period of time (frame). Once all
received signals have been organized in an array (top left), an FFT (FFT,) is performed to obtain f;, or equally, the range r, according to Eq. (A.1). Finally, the elements of each
column for the new array (top right) will have the same magnitude with linearly increasing phase A¢, which can be obtained by applying a new FFT (FFT,) that will provide
velocity information (bottom), as in Eq. (A.4).
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Fig. A.15. Spectral analysis required to get range-AoA (azimuth/elevation) heatmaps. Analogously with the velocity computation, the received signals are arranged in an array, but
this time the signals are those received at the same time in different antennas (top left). First, an FFT (FFT,) can be done to figure out f,,, or equally, the range r-equation (A.1).
Finally, the elements of each column for the new array (top right) will have the same magnitude with linearly increasing phase 4, which can be obtained by applying a new
FFT (FFT,) that will provide angular information (bottom) - equation (A.5).
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