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Figure 1: Synthetic haze effects have been automatically added to the right two-thirds of each image, based on the associated

depthmaps. There is a realistic loss of contrast and sharpness, in the distant parts of each scene, owing to synthetic absorption

and scattering effects. Note that the closest objects remain clearly visible. These effects can be computed in real time, by 2D

inhomogeneous diffusion, in a GPU shader.

ABSTRACT

This paper introduces a new method for adding synthetic atmo-

spheric effects, such as haze and fog, to real RGBD images. The

given depth maps are used to compute per-pixel transmission and

and spatial frequency values, which determine the local contrast

and blur, based on physical models of atmospheric absorption and

scattering. A fast 2D inhomogeneous diffusion algorithm is devel-

oped, which is capable of computing and rendering the effects in

real time. The necessary pre-processing methods, including sky

identification and matting, are also explained. A GPU implementa-

tion is described, and evaluated on a range of RGBD data, including

that from outdoor lidar and indoor structured light systems.

1 INTRODUCTION

The synthesis of atmospheric image effects, such as haze and fog,

is of interest for three reasons. Firstly, it is well known that these

effects can significantly increase the realism of computer generated

imagery [O’Neil 2005; Wroński 2016]. Secondly, it may be neces-

sary to add haze or fog to real video footage or photographs, for

cinematic or stylistic effects [Christiansen 2006; Narasimhan and

Nayar 2003]. Thirdly, there is considerable interest in removing

real fog and haze effects from photographs [Cai et al. 2016]; these

dehazing methods can be trained on synthetic degraded images,

for which the ground truth originals are available. The approach

described here is relevant to all three of these applications. The

required input is RGBD imagery, which can be acquired in several

different ways. Both outdoor lidar [Adams et al. 2016] and indoor

structured light [Scharstein et al. 2014] data sets are used in the

present paper. It would also be possible to use stereo matching or

single view reconstruction methods, in the absence of scanner data.

In the case of computer generated imagery, the depth buffer can be

used; indeed this is easier than dealing with real imagery, because

the projection of the sky (and/or other light sources) is known.

There is a large computer graphics literature on rendering in

participating media, such as haze or fog [Cerezo et al. 2005]. The

possible approaches range from simple linear attenuation (glFog
in OpenGL), to physically based volumetric simulations [Premože

et al. 2004; Stam 1995; Sun et al. 2005], and machine learning ap-

proaches [Kallweit et al. 2017]. Volumetric rendering methods are

not directly relevant to the present work, because they typically

require complete 3D scene models, although significant precompu-

tation may be possible [Bruneton and Neyret 2008]. The method

developed in sections 3–4 only requires access to a depth map, and
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is primarily aimed at real imagery. Hence, although some light

transport theory is needed (in section 2), the following literature re-

view will focus on ‘2.5D’ or screen-space rendering methods, which

are more directly comparable to the present approach.

1.1 Previous work

This work is partially inspired by that of Elek, Ritschel and Seidel,

who introduced a screen-space rendering method, for scattering

media [Elek et al. 2013]. That work makes use of a depth-based

blur parameterization, as will be done here, in order to post-process

computer generated imagery. Their algorithmic approach is to build

a mipmap of the rendered image, in which the scale of the Gaussian

blur increases from one level to the next. The known depth of each

pixel can then be used as an index into this structure, via the blur

parameterization, so that an appropriate value can be retrieved.

There are two difficulties with this approach, as discussed by

Elek et al. Firstly, there is inevitable brightness ‘leakage’, across

depth boundaries. This is because the filter scale is constant within

each level, so (for example) a dark background pixel may acquire un-

related luminance from a bright foreground object, at coarse scales.

This problem is addressed by masking the unwanted contributions,

during the rendering process, with reference to the depth maps. The

second difficulty is that a discrete structure (the mipmap) is used

to represent a continuous phenomenon (blurring). This gives rise

to discontinuities in the image, if the scale indexing is done naively.

Elek et al. address this problem by generating the scale indices

from a blurred depth map, and then linearly interpolating between

the two nearest levels in the mipmap. These remedies work well

in practice, but they are somewhat removed from the underlying

scattering theory. Furthermore, it is unclear how sensitive these

approximations would be to depth errors (e.g. in lidar data), because

Elek et al. work with computer generated imagery, and have access

to the full resolution depth buffer.

The algorithms developed in the present paper are more simi-

lar to those in certain synthetic depth of field methods, although

the latter are typically designed for computer generated imagery.

Lee et al. use a filtered mipmap, comparable to that described above,

for depth of field effects [Lee et al. 2009]. A different approach is

taken by Bertalmío et al., who use inhomogeneous diffusion to

obtain space-variant blur, as do Kosloff and Barsky [Bertalmío and

Fort 2004; Kosloff and Barsky 2007]. These latter works use explicit
methods to solve the diffusion PDE; this approach is very slow,

as will be shown here (in section 5.3). Kass et al. use an implicit
method, and propose a GPU algorithm to solve the resulting tridi-

agonal system of equations [Kass et al. 2006]. The present work is

also based on inhomogeneous diffusion, but uses a different method

to solve the PDE.

Finally, a splatting method for depth of field (and motion blur)

effects has been introduced [Leimkühler et al. 2018]. The splatting

operations are performed in the Laplacian domain, where they are

very efficient, using pre-computed PSFs. This method, which is

applied to computer generated scenes, is not directly related the

present approach.

1.2 Contributions

The organization and contributions of this work are as follows.

Section 2 describes the optical effects of fog and haze, including a

simple scattering approximation (2.2), based on the work of Pre-

može et al. [Premože et al. 2004]. Section 3 develops a screen-space

inhomogeneous diffusion model of atmospheric effects, involving

a new blur parameterization, and an efficient scale space repre-

sentation (3.2). This approach was not considered in the literature

reviewed above. Section 4 describes the practical aspects of the

model, including a new sky segmentation procedure (4.1), and an

efficient GPU implementation (4.2). The accuracy and speed of the

model are evaluated in section 5.

2 ATMOSPHERIC DEGRADATION

This section contains an overview of the model, which emphasizes

the role of spatial scale in the rendering process (2.1). In particular,

the mapping from viewing distance to spatial scale is defined, in

relation to a physical scattering model (2.2).

2.1 Attenuation and blur

The proposed model depends on the optical transmission τ (x),
which is a function of the range map R (x). The latter encodes the
estimated distance to the visible scene patch at image location

x = (x ,y), as estimated by a lidar scanner, for example. If κa and κs
are the absorption and scattering coefficients, respectively, then the

Beer-Lambert attenuation model is

τ (x) = exp

(
−(κa + κs)R (x)

)
. (1)

Hence the transmission is exponentially decaying [Middleton 1960],

in a homogeneous medium, as determined by the attenuation coeffi-

cient κa + κs. The absorption process represents light that was lost,

whereas the scattering process represents light that was diverted.

Let E(x,σ0) be the original rgb image, in which the inner scale σ0
encodes the spatial resolution, as determined by the sensor and

sampling process [Florack et al. 1994; Koenderink 1984]. This image

is converted to rgba, and pre-multiplied [Blinn 1994] by the inital

transmission map τ (x,σ0) = τ (x), to give the depth-attenuated

rgba image

F(x,σ0) = τ (x,σ0)
(
E(x,σ0), 1

)
. (2)

The local spatial frequency of this image should now be band-

limited to σ (x), where the desired scale is determined from the

known distance R (x), as will be explained in section 2.2. This space-

variant blurring procedure, which will be developed in section 3,

has the approximate form of a convolution integral

F
(
x,σ (x)

)
≈

∫
G

(
u,σ (x)

)
F
(
x − u,σ0

)
du (3)

where G
(
x,σ (x)

)
is a variable 2D Gaussian kernel, and F refers to

each of the four channels Fr, Fg, Fb and Fa. If the visible surface
is continuous and fronto-parallel, then the convolution form (3) is

exact; but in general, therewill be no fixed kernel shapeG associated

with the diffusion process of section 3.

The final colour is rendered by composing the blurred surface

colour F
(
x,σ (x)

)
with the background airlight colour B, recalling

that the former has pre-multiplied opacity:

F
(
x,σ (x)

)
← F

(
x,σ (x)

)
+

(
1 − τ

(
x,σ (x)

))
B(x). (4)
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Note that the blurred transmission τ
(
x,σ (x)

)
has been retrieved

from the alpha channel of F. The airlight colour B, which can be

estimated from sky regions of the image, is typically constant (and

approximately achromatic). This results in an appropriate depth-

dependent loss of contrast, in the final image.

The above model (4) gives visually plausible results, in practice.

An important feature is that the transmission map τ
(
x,σ (x)

)
has

been blurred in the same way as the (pre-multiplied) colour chan-

nels. This is very different from the naive non-premultiplied compo-

sition, τ (x,σ0) E
(
x,σ (x)

)
+

(
1−τ (x,σ0)

)
B, which would allow high

spatial frequency information in the transmission map τ (x,σ0) to
mix inconsistently with colour information in E at local scale σ (x).
Unlike (4), this would give rise to ghost-like edges in distant regions

of the image.

A physical interpretation of (4) is that blurred image regions are

associated with uncertainty about which surface patches reflected

the observed radiance. Hence there should be corresponding uncer-

tainty about the attenuations, because these depend on the distances

to the uncertain patches. From this perspective, the procedure (2–4)

can be seen as a kind of normalized filtering [Knutsson and Westin

1993], with a space-variant kernel.

2.2 Scattering

The Beer-Lambert equation (1) gives the optical transmission τ (x)
as a function of distance R (x) and the absorption and scattering

coefficients κa, κs. An analogous equation for optical blur σ (x) has
been derived by Premože et al., based on path integral approxima-

tions [Ashikhmin et al. 2004; Premože et al. 2004]:

σ (x) =

√
1

2

(
2κa
3R (x)

+
4

(1 − ν )κsR 3 (x)

)−1
. (5)

The directional concentration parameter ν ∈ [−1, 1] is the average
projection of the scattering direction onto the forward direction,

which in turn depends on the chosen phase function [Premože et al.

2004]. For example, if ν = 1, then no scattering occurs, because the

two directions must always be collinear.

The blur definition (5) was used directly by Elek et al. in their ren-

dering scheme [Elek et al. 2013]. It would be useful to have a more

intuitive approximation of this function, but the corresponding

Taylor series is divergent. Nonetheless, the definition (5) can be put

into the form (a R3/2) (b + c R2)−1/2, which can then be developed

in a generalized binomial expansion. The result can be expressed

as a multiple of the transformed variable R3/2 (x), as follows:

σ (x) ≈

√
(1 − ν )

2

√
2

κ1/2
s

R 3/2 (x). (6)

Note that the absorption coefficient κa does not appear in this new

approximation. Also note that the physical dimensions are consis-

tent, because R has units of length, while κs has units of inverse
length. In practice, there are overall scale factors, involving the

camera parameters (e.g. focal length), in the relationship between

distance and blur. These unknowns will be combined, along with

the directional concentration coefficient ν , into an overall dimen-

sionless parameter λ. It will also be assumed, for convenience, that

the range R is divided by Rmax, while κa and κs are multiplied by

the same number, to compensate. With these normalizations in
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Figure 2: Red lines: the scattering function (5) from [Pre-

može et al. 2004], plotted in physical units, for four values of

the scattering coefficientκs. Blue dots: the proposed approxi-
mation (6), which is satisfactory for rendering purposes. The

directional concentration is set toν = 0.9, which corresponds

to a typical forward scattering effect [Elek et al. 2013]; the

absorption coefficient is set to a high value κa = 0.005, in all

cases.

mind, the proposed scale parameterization is, based on (6):

σ (x) = σ0 + R
3/2 (x)

(
σmax − σ0

)
for R ∈ [0, 1] (7)

where σmax = σ0 + λκ
1/2
s
.

Now the closest points R (x) = 0 will retain the original scale σ0,
while the furthest points R (x) = 1 will appear at scale σmax. Hence

the effect of λ is to set the maximum possible blur, in the final image,

given the scattering parameter κs and initial resolution σ0. The

intermediate scales increase as R3/2, in accordance with (6). Note

that the parameterization (7) corresponds to the plots in figure 2,

after vertical scaling and offset. The slope of σ (x) becomes zero as

R (x) → 0, which means that any objects in the closest part of the

scene will remain quite sharp.

In summary, the main parameters of the model are (κa,κs, λ),
where the absorption coefficient κa has no effect on the blur, accord-

ing to the approximation (6). The scattering coefficient κs affects
both attenuation and blur, as light is diverted from its original path,

onto another.

3 INHOMOGENEOUS DIFFUSION

Diffusion tends to equalize the spatial distribution of intensity F (x).
In particular, an uphill concentration gradient ∇F induces a down-

hill flux w = −ϱ∇F , where ϱ is the diffusion rate. If intensity is

conserved, then the change over time t is the negative divergence
of the flux, ∂F/∂t = −div(w). These observations can be combined,

to form the classical equation for spatial diffusion [Crank 1975]:

∂

∂t
F (x,σ ) = div

(
ϱ (x)∇F (x,σ )

)
(8)

= ϱ (x)∇2F (x,σ ) + ∇ϱ (x) · F (x,σ ).

If the diffusion coefficient ϱ (x) is constant over the image, then

the convective term ∇ϱ (x) · F (x,σ ) is zero. It is well known that

Gaussian blurring arises as a solution to the remaining equation,
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∂F/∂t = ϱ∇2F . Specifically, the Green’s function that solves this

equation, by convolution with the initial image F (x,σ0), is the
normalized Gaussian [Koenderink 1984; Lindeberg 1994]

G (x, t , ϱ) =
1

4πϱt
exp

(
−|x|2

4ϱt

)
(9)

where 2ϱt is interpreted as the variance σ 2
of the kernel. This means

that, as the image diffuses, the spatial scale at time t is

σt =
√
σ 2

0
+ 2ϱt . (10)

Here the inner scale σ0 is again interpreted as the resolution of the

original image, at the initial level of the resulting scale-space [Flo-

rack et al. 1994; Koenderink 1984]. The plan in the following sub-

sections is to let ϱ (x) vary across the image, so that at time T , the
desired scale σ (x) is reached at every location x. A standard nu-

merical approach will be developed first (3.1), followed by a much

more efficient approach (3.2).

3.1 Discretization

The diffusion equation (8) can be solved numerically, by taking

a forward difference in time F (x,σt+1) − F (x,σt ), and equating

this to a combination of spatial differences that approximate the

divergence [Weickert 1997]. A ‘Forward Euler’ update for F (x,σt+1)
can then be obtained by moving the F (x,σt ) term to the spatial

side of the equation. A standard discretization scheme [Perona and

Malik 1990] is used here, as described below.

Conceptually, the weighted gradient ϱ (x)∇F (x,σ ) is evaluated
at the four locations x + (±1/2, 0) and x + (0,±1/2), by averaging

adjacent pairs of ϱ samples, and differencing adjacent pairs of F
samples, at the corresponding locations. The divergence can then

be estimated by differencing the previous estimates, horizontally

and vertically, and summing the results. The whole procedure re-

duces to a weighted average of the four neighbourhood differences

around x. Combining the above arrangements leads to the follow-

ing algorithm [Perona and Malik 1990], which applies in each of

the four image channels:

F (x,σk+1) ← F (x,σk ) +
∑
uk

ϱ (x, uk )
(
F (x + uk ,σk ) − F (x,σk )

)
for k = 0, . . . ,N − 1 and F = Fr, Fg, Fb, Fa. (11)

Here uk ranges over the four neighbourhood offsets, (±1, 0) and
(0,±1). These do not yet depend on k ; the subscript has been in-

cluded for later developments. The coefficients ϱ (x, uk ) are defined
as follows, based on the given diffusion rates ρ (x):

ϱ (x, u) = 1

2

(
ρ (x + u) + ρ (x)

)
. (12)

The per-pixel rates ρ (x) are set in relation to the total time T re-

quired to reach the maximum required blur, σmax, where the latter

is easily determined from the maximum range Rmax and setting of λ
in the parameterization (7). Specifically, the rate ρ (x) ∈ [0, ρmax] is

interpolated in proportion to σ 2 (x) ∈ [σ 2

0
,σ 2

max
], as follows:

T =
σ 2

max
− σ 2

0

2ρmax

N = ceiling(T )

ρ (x) =
σ 2 (x) − σ 2

0

2N
u ∈

{
(±1, 0), (0,±1)

}
(13)

so that σk (x) =
√
σ 2

0
+ 2kρ (x) and σN (x) = σ (x).

The maximum rate ρmax can be set to an upper limit of 1/4, as

determined by standard numerical stability analysis of the iterative

scheme (11), in 2D [Crank 1975]. Note that there are a whole num-

ber N of iterations, and that rounding up the total timeT makes the

rates slightly conservative, with respect to ρmax. Also note that if

σmax = σ0 then σ (x) = σ0 as expected, because ρ (x) must be zero

in this case.

3.2 Invariant formulation

The original diffusion process (8) runs in a scale space (x,σ )with the
usual Euclidean metric ds2 = dx2 + dσ 2

. Eberly proposes to replace

this with the Riemannian metric ds2 = dx2/σ 2 + dσ 2/σ 2
, so that

both spatial distances and scale differences are measured relative to
the current scale σ [Eberly 1994]. This metric achieves translation

invariance, both within and between scales. The corresponding

scale space derivative operator σ∇ is obtained from the invariant

gradient dF , where the latter is constructed via the differential forms(
dx
σ ,

dσ
σ

)
. The derivative operator is then

(
σ ∂F

∂x dx, σ
∂F
∂σ dσ

)
=

G−1
(
∂F
∂x

dx
σ ,

∂F
∂σ

dσ
σ

)
, where G = I3/σ 2

is the 3 × 3 diagonal metric

tensor, and x = (x ,y) as usual.
Using these definitions, Eberly investigates the modified diffu-

sion equation

σ
∂

∂σ
F (x,σ ) = σ 2∇2F (x,σ ) (14)

which runs ‘multiplicatively’ in scale. This is of great practical

significance here, because the original equation is very slow to

reach large scales, owing to the relation t ∝ σ 2
implied by (10). The

modified equation (14) is effectively a re-parameterization of (8)

with respect to σ . This can be seen by dividing both sides of (14)

by σ 2
, and then using the chain rule

∂F
∂σ =

∂F
∂t

∂t
∂σ = σ ∂F

∂t . It may

be noted that a closely related difference of Gaussians representation
is used to compute the sift image descriptor [Lowe 2004].

Eberly proposes a finite difference scheme in σ [Eberly 1994], by

identifying the left-hand side of (14) with

σ
∂

∂σ
F (x,σ ) = lim

ϱ→0

F (x,σeϱ ) − F (x,σ )
ϱ (15)

which can be seen from l’Hôpital’s rule. Meanwhile, the right hand

side of (14) is identified with

σ 2∇2F (x,σ ) = lim

ε→0

F (x,σ ) −
1

4ε2

∑
v(ε,σ )

F
(
x + v(ε,σ ), σ

)
where v(ε,σ ) ∈

{
(±εσ , 0), (0,±εσ )

}
.

(16)

This results from replacing the constant spatial increment δ with

the scaled increment ε = δ/σ . Finally, setting ε = 1, it is straightfor-

ward to combine (15) and (16) into the form of the original update
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equation (11). It is important to note that the scale parameter is

now sampled geometrically as

σk = σ0e
kϱ

(17)

and therefore advances quickly, compared to the Euclidean scale

space relation (10).

The above scheme will now be made space-variant, by analogy

with (13). The interpolation takes place in the logarithmic space

log(σ (x)) ∈ [log(σ0), log(σmax)], instead of in the quadratic space

of variances. Hence the new configuration for equation (11), includ-

ing the variable spatial neighbourhood from (16), is as follows:

S =
log(σmax/σ0)

ρmax

N = ceiling(S )

ρ (x) =
log

(
σ (x)/σ0

)
N

uk ∈
{
(±σk , 0), (0,±σk )

}
(18)

so that σk (x) = σ0 exp
(
kρ (x)

)
and σN (x) = σ (x).

Themaximum rate ρmax can be set to an upper limit of 1/4, as before.

The final coefficient ϱ (x) for (11) is also obtained as before (12). The
values F (x + uk ,σ ) are obtained by bilinear interpolation, because

the coordinates x + uk will not be integer values, in general.

This scheme looks computationally unappealing, because twenty
bilinear interpolations must be performed per pixel, per iteration

if the definitions (18) are used in (11). These interpolations are

counted as (Fr, Fg, Fb, Fa,R) × (4 neighbours). However, this is a
very easy proposition on a GPU, which executes bilinear interpola-

tion in hardware, in parallel. In fact, section 5.3 will show that the

computational cost is negligible, compared to the reduced number

of iterations implied by (17), as opposed to (10).

4 IMPLEMENTATION

This section describes the practical aspects of the model, including

some supporting procedures. In particular, section 4.1 describes

how the data are preprocessed, including the treatment of holes

and sky regions in the scanner data. Section 4.2 describes the details

of the GPU shader implementation.

4.1 Data pre-processing

A simple ransac procedure [Fischler and Bolles 1981] is used to fill

any holes in the range map, by sampling from the available values

on each hole boundary. The value that minimizes a robust function

of the gradient ∇R (x), across the boundary, is used to fill the hole.

A more difficult problem is posed by the sky, which has indef-

inite range, in outdoor images. Furthermore, the horizon is often

a very complicated interface, especially when foliage is involved.

This interface is usually the least reliable part of the data, for the

following reasons. Firstly, the range data may be poor, owing to

beam divergence at far distances, which results in mixed sky/object

returns. Less obviously, the image data can be poor, owing to satu-

ration and leakage of bright sky across fine object structures. These

issues can give rise to bad visual artefacts, because the image and

range data can be inconsistent. This problem could be solved by

fully segmenting the sky, which may consist of many disjoint re-

gions, and matting it into the horizon. However, it can be argued

that this difficult task is unnecessary, in the present context. Recall

Figure 3: Range pre-processing. Top: part of an outdoor lidar

scan [Adams et al. 2016], with lighter points being further

away. The missing data (red) includes small surface patches,

as well as the entire sky. Bottom: the same data after prepro-

cessing. The holes have been filled, and the uncertain hori-

zon has been matted into the sky, which has been identified

and associated with the maximum distance (white). None of

the original data have been altered by these processes.

that both sky and non-sky structures are ultimately composed with

the airlight (4). If the latter has a single representative colour, then

‘incorrect’ transmission has little or no effect on sky regions; it

simply changes the blending between two almost identical colours.

Indeed, it can be argued that there is no ‘correct’ transmission for

the sky.

From this perspective, the full segmentation problem can be

avoided, provided that the horizon interface is made consistent with
the data. This means that the known range values should not be

changed, and that there should be no hard transition at the interface.

This ensures, in turn, that no hard edges can be created by incorrect

sky composition. These requirements are satisfied by the following

procedure, which tapers outwards from the observed range values,

into the sky. A typical result is visualized in figure 3.

Firstly, the majority of the sky is identified, by finding the largest

connected components of undefined range values. These regions

are all assigned a constant range value Smax > Rmax, where Rmax

is the maximum observed range (often the maximum range of the

scanner). Next, a constant-width margin of uncertainty is identified

at the sky interface, by thresholding the distance transform [Maurer

et al. 2003] of the binary scene mask (support of R) at some value µ.
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Let S0 (x) = Smax be the initial range values in the margin. These

values are then adjusted, in order to solve the 2D Poisson equa-

tion ∇2S = 0, subject to Dirichlet boundary conditions S (x) = R (x)
on the scene side of the margin, and S (x) = Smax on the sky side.

The solution is easily obtained, by iteratively replacing each mar-

gin estimate S (x) by the average of its four neighbours S (x + u).
This naive Jacobi iteration is very slow in general; however, in the

present application, the maximum propagation distance µ is small

by definition, as is the total area of the margin. In practice, a good

solution is obtained after about 2µ iterations, given that it takes

about µ iterations for information to propagate across the margin.

Note that this procedure slightly extrapolates the available data, but
does not blur it. In fact, the Poisson solution can be meaningfully

related to the diffusion equation (8). In particular, the same result

would be obtained by diffusing − log
(
τ/(κa +κs)

)
to a steady state,

∂S/∂t = 0, subject to the given boundary conditions.

4.2 Real-time rendering

The model has been implemented in OpenGL 3.2 ES [Leech 2015],

with shaders written in GLSL 320es. This version of the API is

widely available on mobile devices, although the present results

were obtained on a laptop. The general strategy is to use two full

resolution textures, one for the source F (x,σk ), and one for the

target F (x,σk+1) in the diffusion iteration (11). The target texture

is rendered in an offscreen framebuffer, although a progressive

display could also be shown. There is no need to copy the current

target texture back to the source, for the next iteration; the two

texture bindings can simply be swapped. The GL_RGBA32F format,

in which each component is a 32bit IEEE float, is used for the two

textures, as well as for the depth map. Additional tests are reported

for half-precision GL_RGBA16F textures, in section 5.

A total of N + 2 shader passes are performed, in the current

implementation: one to premultiply the transmission (2), followed

by N diffusion iterations (11), and a final pass to composite the

image with the airlight (4). This could be reduced to N passes,

by modifying the first and last diffusion iterations, but it would

then be slightly less convenient to integrate the method with other

rendering processes or shaders.

The four components of F are processed in parallel, using na-

tive operations on the GLSL vec4 type. Bilinear interpolation of

F (x + uk ,σk ) is done in hardware, so only a single texture fetch is

performed in the shader, for each interpolated value [Leech 2015].

5 EXPERIMENTS

Some initial results from the new model are reported in the follow-

ing sections, starting with example images in section 5.1. It was

claimed in section 3.2 that the invariant reformulation is faster than

the naive Euler scheme of section 3.1. The accuracy and speed of

the invariant scheme will be established, in sections 5.2 and 5.3,

respectively.

5.1 Appearance

The model has been tested on images from two data sets. The syns

data [Adams et al. 2016] comprises outdoor lidar scans, with co-

registered spherical panoramas. TheMiddlebury 2014 data [Scharstein

et al. 2014] comprises indoor structured light scans, with co-registered

DSLR images. These datasets therefore represent a good range of

challenges. The outdoor syns data requires sky segmentation, and

has some inevitable discrepancies between the range and colour

data (e.g. due to moving foliage). The Middlebury data has excel-

lent depth maps, but the high contrast and hard edged scenes are

very revealing of any rendering artefacts. All images are of size

1600 × 1040 in these experiments.

Figures 4 and 5 show some example results, which were obtained

using the fast invariant scheme described in section 3.2. Recall from

section 2.2 that normalized units R′ = R/Rmax and κ
′ = κRmax are

used here. For example, the reported coefficients, for the syns scene,

should be divided by Rmax = 46m, to obtain physical values.

It is notable that depth discontinuities, such as the vertical black

pole on the right, are well rendered in figure 4. Recall that no

additional logic or masking was used at these boundaries; they

were properly maintained by the inhomogeneous diffusion scheme.

Some minor artefacts can be seen around edges on the right of

figure 4, but these are not detectable in natural imagery. It is notable

that the complex sky interface is well rendered, in figure 5, despite

the simplicity of the approach described in section 4.1.

Finally, it should be mentioned that the fast diffusion method

allows interactive control of the (κa,κs, λ) parameters. In fact the

whole solution can be recomputed, without noticeable delay, after

any adjustment.

5.2 Accuracy

The results of the standard and accelerated schemes are visually

identical, when presented side by side, on a range of images. It is

difficult to quantify the accuracy of the haze rendering, owing to

lack of ground truth data. However, it is straightforward to quan-

tify the accuracy of the underlying diffusion schemes, by setting

all target scales to a reference value σ (x) = σ
ref

, and then com-

paring the result to that from a standard Gaussian convolution

with kernel width σ
ref

. There are three possible sources of error,

in the RMS differences. Firstly, accumulation of rounding error

is potentially the most serious problem for both Forward Euler

schemes (13,18). The accumulation is known to be catastrophic if

the limit ρmax ≤ 1/4 is not observed [Crank 1975], and may be prob-

lematic as it is approached. Secondly, both schemes use the same

four-neighbour discretization of the Laplacian operator, which may

cause anisotropy artefacts. Thirdly, the invariant scheme (18) takes

large spatial steps, as the iterations progress, and also requires bi-

linear interpolation of every image sample. Note that none of these
problems affect the reference convolution.

The result of this test is clear and consistent — although perhaps

not as expected. Data for the Middlebury ‘Pipes’ [Scharstein et al.

2014] image are reported, owing to the high contrast, and wide

range of spatial frequencies in this example. It is clear from figure 6

(top) that the original scheme (13) is unstable in 16bit precision. It

is stable in 32bit precision, but still much less accurate than the

invariant scheme (18), in either precision. This shows that although

the the invariant scheme (18) has two additional sources of error

(increasing step size and bilinear interpolation), these are completely
subsumed by the rounding error that accumulates during the many

additional iterations of the original scheme (13).
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Figure 4: Top: original reference image from the Middlebury data set [Scharstein et al. 2014]. Note that the entire scene is

in good focus. Bottom: example synthetic steam effects. Bottom left: Absorption only (κa = 0.25) does not give a realistic

effect; distant objects have reduced contrast, but are too sharp. Bottom middle: scattering, to an equivalent attenuation level

(κs = 0.25, λ = 15), shows realistic blurring in the distance. Note that the yellow handle in the foreground is still as sharp

as the original (above). Bottom right: a more extreme example, with scattering, additional absorption, and an increase in the

maximum blur scale (κa = 0.25, κs = 0.25, λ = 30). Note the dramatic difference in resolution between the vertical black pole,

and the background.
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Figure 5: Top: original reference image from the syns data set [Adams et al. 2016]. Bottom: example synthetic fog effects.

Bottom left: Absorption only (κa = 0.25) does not give a realistic effect; distant objects have reduced contrast, but are too sharp.

Bottom middle: scattering, to an equivalent attenuation level (κs = 0.25, λ = 15), shows realistic blurring in the distance. Note

that the target in the foreground is still as sharp as the original (above). Bottom right: amore extreme example, with scattering,

additional absorption, and an increase in the maximum blur scale (κa = 0.25, κs = 0.25, λ = 30). The foreground grass remains

clear.
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Figure 6: Accuracy of isotropic diffusion blurring on a float-

ing point image (in the range [0, 1]). Top: the original diffu-

sion scheme (13) performs well in 32bit precision (dark red),

but suffers from severe accumulation of error in 16bit preci-

sion (light red). Bottom: the invariant numerical scheme (18)

is approximately ten times more accurate, noting the verti-

cal axis limit, in both 32bit (dark blue) and 16bit (light blue).

The oscillation of the invariant error in figure 6 (bottom) is
attributable to bilinear interpolation. This depends on how the

sample points x + uk happen to align, on average, with the pixel

grid (11). However, this effect soon becomes irrelevant as the high

spatial frequencies are blurred out of both the reference and test

images; hence the observed damping of this oscillation.

5.3 Speed

Performance of the OpenGL implementation was measured us-

ing the GL_TIME_ELAPSED timer query [Leech 2015], which re-

turns the time taken for all GPU tasks to complete (including any

CPU time between shader passes). This accounts for all pixel pre-

multiplication, diffusion, and compositing operations, in the present

implementation. The tests were performed on an ordinary laptop,

with Intel integrated graphics (i915/UHD620), under Linux. Aver-

ages were taken over five runs of any measurement, although in

practice there is essentially no variation in GPU timings, owing

to the simplicity of the shaders. The same 1600 × 1120 Middle-

bury [Scharstein et al. 2014] ‘Pipes’ image is used for this test,

although in fact the timings are independent of the image content,

for any fixed scale σ
ref

.
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Figure 7: Speed of isotropic diffusion blurring on a 1600×1120

floating point image. Top: the original diffusion scheme (13)

is very slow to reach large scales, in both 32bit (dark red)

and 16bit (light red) precision. The quadratic relationship

between scale and time (13) is clearly visible. Bottom: The

invariant scheme (18) is almost a hundred times faster, not-

ing the vertical axis limit, in both 32bit (dark blue) and 16bit

(light blue). Error bars represent ±1 standard deviation, and

show essentially no variation, for these GPU-based imple-

mentations.

The results of this test are clear, and not surprising, as shown

in figure 7. The timings for the original scheme (top) reflect the

quadratic relationship between scale and time (13); more than 900

iterations were required to reach the maximum scale of 25px, as

opposed to 13 iterations for the invariant scheme (18). The 16bit

version is approximately twice as fast as the 32bit version, at the cost

of accuracy, as already seen in fig. 6. The invariant scheme (bottom)

is almost 100 times faster, with a similar factor of two between the

16bit and 32bit versions. Note that the 25px maximum scale in these

tests is quite extreme; the corresponding D × D convolution kernel

is 101px × 101px, using the convention D = 1 + 2ceiling
(
2σ

ref

)
.

6 DISCUSSION

A new approach to image-based atmospheric effects has been devel-

oped, which is both fast and physicallymotivated. It has been shown

that although there are problems with the obvious GPU implemen-

tation, these can be solved by a simple re-parameterization of the

diffusion equation [Eberly 1994]. The model has been developed

for real-world RGBD data, but is equally applicable to computer
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generated imagery. Future work will generalize the model in two

ways. Firstly, the 3D distribution of haze will be made inhomo-

geneous, and time dependent. Secondly, the scalar diffusion rate

will be replaced by a diffusion tensor, in order to model directional

effects, such as rain.
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