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ABSTRACT

This paper studies tagging and retrieval of room impulse responses from a labelled library. A similarity-based
method is introduced that relies on perceptually relevant characteristics of reverberation. This method is developed
using a publicly available dataset of algorithmic reverberation settings. Semantic word vectors are introduced to
exploit semantic correlation among tags and allow for unseen words to be used for retrieval. Average precision is
reported on a subset of the dataset as well as tagging of recorded room impulse responses. The developed approach
manages to assign downloaded room impulse responses to tags that match their short descriptions. Furthermore,
introducing semantic word vectors allows it to perform well even when large portions of the training data have
been replaced by synonyms.

1 Introduction

Artificial reverberation has been used extensively in the
process of mixing music by sound engineers to intro-
duce the illusion of space and make instruments and
voice sound more natural. There are two distinct ways
to produce reverberation with computational means: by
imitating the reverberation process using algorithmic
approaches, or by convolving with a room impulse re-
sponse (RIR) which tries to capture the behaviour of
a space across time and frequency [1]. While algorith-
mic approaches predate convolutional historically, the
latter became prevalent in cases when sound engineers
wanted to assign a label (e.g. forest, underground park)
to the acoustics of an environment. Those approaches
rely on using a convolutional reverberation plug-in in
the sound engineer’s digital audio workstation and a

library of RIRs. These RIRs are stored as audio files
and up to now needed be manually annotated (usually
in their filename), and retrieving them relied on simply
searching the text for these annotations. This may raise
issues when the files are labelled incorrectly or not ac-
cording to their perceived characteristics (e.g. ir.wav
instead of forest.wav). In this paper we present a
way to alleviate those issues, by automatically tagging
and retrieving unlabelled RIRs based on the percep-
tual effect they have on sound. For example we can
search RIRs that make a sound loud and dark based on
their content. Our main motivation for this is our previ-
ous work on producing sound from story narrative [2]
where we needed methods to apply effects based on the
source story text. We believe that our method can lead
to assistive tools for sound engineers, allowing them to
browse a library of RIRs easily; aid in field recording
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scenarios [3] by quickly organising recorded RIRs; and
organising and retrieving the numerous freely available
RIRs available on the net.

Since RIRs are stored as regular audio files, an ap-
proach would be to use content-based audio retrieval
tools to label and retrieve them [4]. Those approaches
however make only minor assumptions about the fea-
tures of the sound, and try to learn the parts that are
useful in retrieval by analysing each separate frame
of the signal and using sophisticated machine learning
tools to assign labels to audio files. However, RIRs
have been studied extensively in the past and their per-
ceptually relevan characteristics are well known. We
exploit these characteristics to provide a retrieval sys-
tem for RIRs. Our main contributions in this paper
are:

1. We provide a similarity-based method for tagging
and retrieving RIR files based only on their per-
ceptually relevant characteristics.

2. We show that by carefully choosing representation
of words, we can retrieve RIRs by querying for
labels we have not seen before.

3. We show that with the correct choice of RIR char-
acteristics such a method can lead to models that
are trained on datasets of synthetic RIRs, but can
also be used for recorded RIRs.

2 Previous Work

In [5] the authors described an algorithmic reverbera-
tion effect that can be controlled by perceptually rel-
evant measurements of the reverberation impulse re-
sponse, such as reverberation time and echo density,
to apply reverberation based on specific terms (e.g.
boomy or not boomy at all). The work continued in
[6] which created a map from those terms and applied
reverberation either by searching for a specific term,
or by exploring the descriptor map. The authors of [7]
presented an effect plugin architecture for algorithmic
reverberation that allows crowdsourcing of semantic
descriptors from the users of the effect. Our paper is
similar to the works above in that it tries to apply rever-
beration using crowd-sourced semantic descriptors but
differs in that it allows applying reverb using multiple
descriptors (for example dark and muffled instead of
just dark or muffled), and it does so using convolutional
reverberation and recorded room impulse responses
instead of an algorithmic reverb effect.

3 Retrieval based on similarity

We approach the problem of retrieving RIRs from text
queries in a similar fashion to [4]. A content-based
retrieval system that can retrieve RIRs from queries has
the goal of taking a set of RIRs M, and a query q and
ranking them so that a RIR that is more relevant to q
than m′ gets ranked earlier:

r(m,q)< r(m′,q) (1)

Similarly, a system that assigns tags t in T to RIRs m
in M should rank tag t that is more relevant to m than
t ′ ahead of it:

r(m, t)< r(m, t ′) (2)

In order to construct such a system, we can construct
functions F such that:

F(m,q)> F(m′,q) (3)
F(m, t)> F(m, t ′) (4)

A simple but effective method is to count occurrences
of pairs (m, t) in a training set, where m is an impulse
response and t a tag, and use those occurrences in a
matrix as our scores (normalized so that each row has
length 1 for convenience). Suppose we have a query q
consisting of tags t1 . . . tN and a matrix of occurrences
WWW , we can define the score as:

F(m,q) =WWW m,t1 +WWW m,t2 + · · ·+WWW m,tN (5)

If we represent tags as a set of column vectors ttt ∈
[0,1]N , we can write the above equation as:

F(m,q) = wwwmqqq =< wwwT
m,qqq > (6)

where wwwm is the row of the occurrence matrix WWW cor-
responding to impulse response m, < ·, ·> represents
the vector inner product, and qqq is the sum of tags ttt1...N .
It is worth noting that the inner product is a measure of
similarity, the more similar wwwTTT is to ttt, the higher the
value of the product. By using the vector identify for
the inner product:

< aaa,bbb >= ‖aaa‖‖bbb‖cos 6 (aaa,bbb) (7)
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We can further write Eq. 6 as:

F(m,q) = < wwwT
m,qqq > (8)

=
∥∥wwwT

m
∥∥‖qqq‖cos 6 (wwwT

m,qqq) (9)

= cos 6 (wwwT
m,qqq) (10)

Where ‖·‖ is the euclidean vector norm, and the quan-
tity cos 6 (wwwT , ttt) is the cosine similarity between wwwT

and ttt. We can constrain ‖qqq‖= 1 (e.g. by dividing it by
its length) and we can have also constrained vector wwwT

to have length 1.

In order to find the k most relevant RIRs m to query q,
we (1) calculate the cosine similarities between qqq and
all WWW , (2) sort them in descending order, and (3) we
select the first k. A block diagram of the process can
be seen in Fig. 1.

To find the k most relevant tags for a specific RIR
m we work in a similar fashion. However instead of
cosine similarity on the occurrence matrix WWW , we (1)
check euclidean distances between m, characterised by
a feature vector dm that characterizes the RIR, and all of
the RIRs λ in our dictionary, characterised by feature
vectors dλ , (2) sort them in ascending order, and (3)
pick the first k tags that correspond to the top labels in
that step. A block diagram of the process can be seen
in Fig. 2. This depends on the assumption that similar
RIRs are going to be labelled similarly, which we have
found works in practice. The choice of feature vectors
dm is explained in section 5.

4 Choice of dictionary for Query-to-RIR
retrieval

The methods described above work for every dictionary
of tags chosen where ttt ∈ [0,1]N . One obvious choice
is for each tag n to map to Kronecker’s delta:

tttn = δn (11)

qqq =
1
M

M

∑
i=1

ttt i (12)

Kronecker’s delta is given by:

Labelled RIR Library
(mi,qi)

Query q

Calculate F(mi,q)∀mi

Sort (highest first)

Pick mi corresponding
to first k elements

Chosen RIRs

Fig. 1: Block diagram for retrieving the k most relevant
RIRs to query q.

Labelled RIR Library
(mi,qi)

RIR feature vector dm

Calculate ‖dmi −dm‖∀mi

Sort (highest first)

Pick k tags from
labels qi corresponding

to the top elements

Chosen tags

Fig. 2: Block diagram for retrieving the k most relevant
tags to RIR m.
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δn =

{
1 if tag is the n-th tag
0 otherwise

(13)

Eq. 12 comes from the constraint ‖q‖= 1 in case the
query consists of M tags. The method we described
in section 3 then works when every retrieval request
contains a subset of the tags it has been trained with.
This choice of dictionary however, has two major limi-
tations; it does not take into account semantic relation-
ships between different words (e.g. between big and
large), and it cannot deal with out-of-dictionary words.

The second case is obvious. If N words in the dictionary
are represented with δ1...N , then an out-of-dictionary
word will be represented as δν , with ν > N which is
of higher dimensionality than our dictionary. It is less
obvious why the first case poses an issue, but suppose
we have two RIRs m1 and m2, labelled as big-hall, and
large-hall respectively, and we query our retrieval sys-
tem for RIRs that match big-hall. We would like our
system to return to us both m1 and m2 since they are
relevant. However, big-hall and large-hall are labelled
with different δν vectors which are by definition orthog-
onal and therefore their cosine similarity is 0. So if we
query for big-hall , m2 which is labelled as large-hall
will not be retrieved (and vice versa).

These limitations can be addressed by using a different
set of vectors tttν for our dictionary, which retain seman-
tic relationships between the dictionary terms, as long
as those vectors satisfy ‖tttν‖ = 1. An appropriate set
of such vectors can be found in the form of semantic
vectors (or word embeddings). They assign a high di-
mensional vector to each distinct word such that the
distance between two different words relate to some
kind of semantic function (such as encoding whether
the two words are regularly used together). Example of
such word embeddings include Word2Vec [8], GloVe
[9], and ConceptNet Numberbatch [10]. In this work
we make use of the last one, since it encodes a type of
commonsense similarity. For example, a small-room
will be assigned closer to a chapel than a cathedral.

An advantage of using word embeddings in our dic-
tionary is that a similarity between different words is
already embedded in their vector representation vword ,
which can be used simply by replacing the orthonormal
basis function give in Eqs. 11, and 12 with:

tttn = vword (14)

qqq =
1
M

M

∑
i=1

ttt i (15)

This way, when we query for big-hall, the cosine sim-
ilarity with wwwm2 above will be high enough that we
retrieve m2 and therefore solve the first issue described
above. Additionally, out-of-dictionary terms stop being
a problem since every new word will have the same
dimensionality as every word in our dictionary and
therefore can be compared against them using cosine
similarity.

In the section 6, we present experimental results and
show one method based on a similarity method referred
to as sim, using the simple orthonormal basis set, as
well as one using the numberbatch embeddings instead,
which we will refer to as cb.

5 Acoustic Features

In section 3, we mentioned that a RIR m is charac-
terised by a feature vector dddm and that we use similar-
ity between a RIR m and each RIR λ in our library to
retrieve the most relevant tags based on the labels of
the RIRs that are most similar to m. In this section we
explain what the features in dddm are and how they are
derived.

Since our RIRs are essentially audio recordings we
could use methods for content-based sound retrieval
similar to the ones presented in [4]. For example, by
extracting the frames of the audio signal, fitting a Gaus-
sian Mixture Model for each tag, and using the average
of the log-likelihood of each model and each frame as
our scoring function F to rank each RIR. This would
require extracting and fitting a model for at least hun-
dreds of frames for each impulse response.

Compared to arbitrary audio files however, RIRs have
been studied extensively and a number of perceptual
characteristics can be extracted that can sufficiently de-
scribe them. Instead of extracting hundreds of frames
for each recording we can therefore just extract a hand-
ful of those characteristics. There are a lot of those
features to choose from. For this work we chose the
following:

• Reverberation time T60 [11].
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• Echo Density Ed [12].

• Direct-to-Reveberant Ratio Drr [13].

• Central Time Tc.

• Spectral Centroid Sc.

to construct the vector ddd which characterises each RIR:

ddd = [T60 Ed Drr Tc Sc]
T (16)

We chose those measurements over others because they
can be directly mapped to the features used in [6] and
can be computed equivalently for both algorithmically
synthesised and recorded RIRs. They therefore allow
us to use the dataset provided in [6, 14] with minimal
effort. Below we give a definition for each characteris-
tic and a summary on how it is derived.

5.1 Reverberation Time T60

Reverberation time is the time it takes for the power of
the impulse response to drop to imperceptible levels,
usually below 60dB for T60. For RIRs synthesised by
algorithmic reverberation, this is usually just a matter of
measuring the levels of the impulse response dropping
below a relative 10−3 compared to the direct sound
[5]. For recorded RIRs however, the presence of noise
makes this way of measuring T60 unreliable since the
noise level will probably be higher than that. In order to
measure reverberation time at 60db therefore, we use
PYTHON-ACOUSTICS1 which implements a method
based on [15]. This consists of measuring the slope
of the RIR at an earlier threshold (in our case 30dB)
and interpolating to 60dB. Furthermore, T60 is not
measured at the full spectrum, but at 8 octaves centred
at C f = {63,125,250,500,1000,2000,4000,8000}Hz
and the average is taken as the chosen reverberation
time T60:

T60 =
1
8 ∑

f∈C f

T f
60 (17)

where each superscript f is the centre frequency of the
respective band.

1https://github.com/python-acoustics

5.2 Echo Density Ed

Echo density is the number of distinct reflections of the
direct sound that can be heard. It is usually measured
from the impulse response during the early phase of
the reverberation. Again, as with reverberation time,
echo density can be directly measured in the case of
an algorithmically synthesised RIR by measuring the
number of echoes (peaks) over a small period of time
at the early reverberation phase. Again, as with rever-
beration time it is not as easy to measure in the case
of recorded RIRs. To do that, we use the method de-
scribed in [12] which does not give the echo density
exactly, but a metric that highly correlates with it. In
our case, we measure this metric at 8 different time
instances T = {5,10,15,20,30,50,90,190}ms on the
RIR and take the average.

Ed =
1
8 ∑

τ∈T
Eτ

d (18)

5.3 Direct-to-Reverberant Ratio Drr

In [5, 6, 14], the authors base their work on a measure
called Clarity C. However, by the way it is defined it
is more relevant to the Direct-to-Reverberant ratio Drr
when measured in recorded RIRs. This describes the
ratio of energies of the direct sound, to the rest of the
reverberation, expressed in dB.

Drr =
Edirect

Ereverberant
(19)

In the algorithmically synthesised case, it is a simple
matter of taking the ratio of the RIR value at time t = 0
to the sum of squares of the rest of the values. In the
recorded RIR case again this is not the case since we
are uncertain of the location and duration of the direct
sound. To estimate Drr we use the method described
in [13] which calculates the ratio of energies around a
5ms window around the highest peak of the signal and
divides it by the rest of the RIR signal.

Drr =

∫ t0+2.5ms
t0−2.5ms y2(τ)dτ∫ T
t0+2.5ms y2(τ)dτ

(20)

where y(t) is the signal of the RIR, t0 the location of the
highest peak, and T the total duration of the impulse
response.
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5.4 Central Time Tc

Central time Tc is the centre of gravity of the impulse
response [16] and in previous works has been found
to be associated with perceptual descriptors such as
boomy, or church-like [5]. It can be calculated the same
way for algorithmic and recorded RIRs and is given by:

Tc =

∫ T
0 τy(τ)dτ∫ T
0 y(τ)dτ

(21)

where again, y is the signal of the RIR, and T its total
duration.

5.5 Spectral Centroid Sc

Similar to central time, spectral centroid is the fre-
quency at the centre of gravity of the spectrum of the
RIR and is correlated to the brightness of the impulse
response [17, 5]. In our case it is calculated using LI-
BROSA [18]. The signal is split into frames, its Short
Time Fourier Transform (STFT) is calculated and each
frame n of the STFT is normalised. The spectral cen-
troid of frame n is then given by:

Sn
c =

∑
K
k=1 k ·ST FT [n,k]

∑
K
k=1 ST FT [n,k]

(22)

Where K is the number of bins of the STFT. We
calculate the spectral centroid Sn

C for frames at T =
{5,10,15,20,30,50,90,190}ms and take their average
to compute the final spectral centroid:

Sc =
1
8 ∑

τ∈T
Sτ fs

C (23)

Where fs is the sampling rate of the recorded signal.

6 Experimental Results

For evaluating our tagging and retrieval method we
used the dataset described in [6]. This dataset has
been crowdsourced online by asking users to listen
and describe, using simple words, the effect of vari-
ous algorithmic reverberation settings on three excerpts
of piano, guitar, and drums. To apply the effect, the
algorithmic reverberator described in [5] was imple-
mented in the browser using the Web Audio API. Since

the dataset has been updated several times since its
creation, we chose the version used in [14] which con-
tained 6791 labellings of 256 different reverberation
settings. While impulse response measurements were
provided with the dataset, we resynthesised the im-
pulse responses in order to extract the measurements
described in section 5 which can be used both for real-
istic as well as synthesised impulse responses. In order
to do that, we re-implemented the reverberation effect
from [5] while taking into account modifications from
[6] to compensate for limitations of the Web Audio
API. Those modifications consisted of adding a delay
of 0.1ms to the dry signal and the allpass filter, and
using a biquad filter instead of the first order lowpass
filter given in [5]. For this work, we report two sepa-
rate results sets; precision of tagging and retrieval on
a withheld part of the original dataset, and automatic
tagging on 4 realistic impulse response recordings from
two freely available RIR libraries [19, 20].

For the first case, we pseudo-randomly (using a pre-
defined random seed) split our data into three equal-
sized segments. We use the first two as training and
development and keep the last one for testing. We
report results of the methods presented in section 3 built
on both the training and development set and tested
on the testing set. The first two parts were used in the
process of developing our models, and the last was kept
completely separate in order to assure that our reported
results were not biased by our development process.
The models we used implement the method given in
section 3 but using the two different dictionaries given
in section 4. Similar to [4], we report average per-query
(Pq) and per-IR (Pm) precision defined as the ratio of
relevant documents retrieved at the top k positions:

Pν =
|relevantν ∩ retrievedν |

|retrievedν |
,ν ∈ {q,m} (24)

Where | · | denotes cardinality of a set. Per-query and
per-IR precision curves for k = 1 . . .20 are shown in
Figs. 3a, and 3b respectively. Average precision p over
the curve is reported for each curve. Curve labelled as
sim denotes precision of the similarity-based method,
and cb the method based on the numberbatch embed-
dings. Ratio r is the percentage of our training labels
that have been replaced with synonyms. There are cases
in the dataset where impulse responses, that should be
labelled the same, that were labelled using synonyms
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(a) Precision curves for retrieved RIRs
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(b) Precision curves for retrieved tags

Fig. 3: Precision curves for retrieval and tagging. Precision curves labelled as sim use an orthonormal basis for tag
representation and cb use Numberbatch embeddings. Ratio r is the percentage of training data that have
been replaced with synonyms. Average precision p reported is the percentage of relevant (a) RIRs or (b)
tags retrieved respectively at the top k places.

(e.g. big-hall and large-hall) or with highly correlated
words (e.g. church, and cathedral). Ignoring these
correlations leads to similar impulse responses being
scored (and therefore ranked) independently. In order
to show why this matters we replace part of our training
set each time with synonyms derived by Wordnet [21]
and report their precision curves on Figs. 3a and 3b.
Though the similarity-based method performs slightly
better than the method based on the numberbatch em-
beddings, the latter loses much less in precision when
provided with synonym data. This is due to the fact that
the similarity based method assumes that every possible
label comes from a fixed, previously known dictionary
and therefore cannot deal with out-of-dictionary terms.

In table 1 we see how a system built on our method
labelled four real RIRs found from OpenAIR [19] and
EchoThief [20]. The first is a library of freely available
impulse responses accompanied by metadata about the
space and method they were recorded with, and the
second is an online library of RIRs extracted from
noisy environments (such as playgrounds). In the first
RIR, which is from an underground car park, there
is an "interesting resonance" because of some metal

pipes. The system based on our method, instead of
tagging with just big and spacey that relates to the
car park’s size, managed to tag it as metallic. More
results on recorded RIRs on OpenAIR and EchoThief
are available as supplementary material2.

7 Discussion/Limitations

Though we showed examples of how the system per-
forms on real recorded data in table 1, it would be de-
sirable to conduct listening tests using listeners accus-
tomed to the effect of the reverberation and preferably
with experience in mixing. Such an experiment can
be a MUSHRA [22] style listening test using the Web
Audio Evaluation Tool [23] with careful choice of cri-
teria for both listening subjects, as well as appropriate
listening stimuli. Alternatively, napping experiments
can be conducted for the construction of a sound wheel
[24]. Designing and running such experiments however
is not trivial and is out of the scope of this paper. We
have also constrained the number of used perceptually
relevant characteristics to the ones used in the dataset

2https://code.soundsoftware.ac.uk/projects/
chourdakisreiss2019aes
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Description / Filename Space Category Suggested Tags
[. . . ] recording in an underground car park. Chamber, Hall, hall, big, deep, spacey, –, metallic
Has a slightly nice resonance in it from the Open Air church, heavy, organ, slow
metal pipes on the ceiling
The Spokane Woman’s Club hall is a highly Auditorium, Ballroom, sharp, spacious, distant, warm, echo
reflective space with bare walls, a hardwood Hall strong, bright, electric, vibrant,
floor and a curved ceiling [. . . ] cool
Outback Climbing Center Recreation spacey, big, room, buffled, echo

deep, hollow, distant, rolling,
soft

Steinman Hall Venues nice, heavy, clear, deep, romantic
sad, bass, warm, melancholy,
love

Table 1: Labelling of recorded RIR. The first two rows show RIRs from OpenAIR [19] and the last two show RIRs
from the EchoThief [20] library.

from [14] and also characteristics relevant to the rever-
beration IR itself and not to the sound it is convolved
with or to the effect it will have in the final mix. If
such information were known, it could be “plugged
in” as prior and posterior probabilities for tagging and
retrieval. For example, [25] show that there is a strong
relation between musical tempo and choice of echo
delay times in artificial reverberation, something which
we could exploit in order to weigh tags according to
the source input. On the other hand, [26] show that
reverb loudness and early decay time have significant
impact on the perception of a mix. Tags therefore could
be ranked according to the perceptual effect they have
on the mix itself and not just to a single audio source.
Such an extension however would require a dataset of
reverberation parameters collected on multitrack mixes.

The methods we presented here could probably be ap-
plied to other effects as well. For example, [27, 14]
show that the descriptor map used in [6] can be used for
equalization and compression as well, and [28] show
that there are statistical correlations among the various
tags when used in different audio effects. We believe
that our work can incorporate such findings with only
minor modifications. We believe that other interesting
applications can arise from our method. For exam-
ple online libraries based on user contributions that
automatically tag uploaded RIRs and allow users to
browse and download them similar to what websites
like FREESOUND3 do for sound effects. Similarly, a se-
mantic reverb effect similar to the one introduced in [6]

3http://www.freesound.org

could be developed, although for convolutional instead
of algorithmic reverb and with support for full query
search instead of single terms. On a different angle,
we could use the work done for example in [29, 30]
together with dereverberation and source separation
techniques [31] to build intelligent remixing tools that
can act on complex queries such as: “make the guitar
part gloomier”.
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