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ABSTRACT

We use audio fingerprinting to solve the synchronization
problem between multiple recordings from an ad-hoc array
consisting of randomly placed wireless microphones or hand-
held smartphones. Synchronization is crucial when employ-
ing conventional microphone array techniques such as beam-
forming and source localization. We propose a fine audio
landmark fingerprinting method that detects the time differ-
ence of arrivals (TDOASs) of multiple sources in the acoustic
environment. By estimating the maximum and minimum
TDOAs, the proposed method can accurately calculate the
unknown time offset between a pair of microphone record-
ings. Experimental results demonstrate that the proposed
method significantly improves the synchronization accuracy
of conventional audio fingerprinting methods and achieves
comparable performance to the generalized cross-correlation
method.

Index Terms— Synchronization, audio fingerprinting,
microphone array

1. INTRODUCTION

Ad-hoc acoustic sensor networks composed of randomly dis-
tributed wireless microphones or hand-held smartphones have
been attracting increased interest due to their flexibility in sen-
sor placement [1]. A challenge in such ad-hoc arrays is that
the locations of the microphones are generally unknown and
there is no precise temporal synchronization between the mi-
crophones. Traditional microphone-array techniques, such as
beamforming and sound source localization, which rely on
the knowledge of microphone positions and assume sample-
synchronized audio channels, cannot be applied directly [2,3].
The synchronization problem between multiple audio chan-
nels has been addressed using generalized cross-correlation
[2,4,5] and audio fingerprinting [5-8].

The generalized cross-correlation (GCC) method [9],
which calculates the delay that maximizes the correlation
coefficient between two audio channels, is well known for its
accurate time delay estimation and synchronization. How-
ever, due to high computational cost, GCC is more suit-
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able for audio channels that are already coarsely synchro-
nized [4, 5]. Another synchronization approach is based on
audio fingerprinting, which has been originally applied to
music information retrieval [6], and clustering and synchro-
nizing multi-camera videos [7, 8§]. By matching the audio
fingerprints extracted from the sound track, the audio chan-
nels can be synchronized. Well-known audio fingerprinting
algorithms include onset, audio landmark, and Philips Ro-
bust Hash (PRH). Onset is based on detecting the increase
of the signal energy and consists of audio features extracted
for example from 24 individual frequency bands [10, 11].
PRH extracts more detailed features including all the energy
changes in consecutive bands and frames, and is more robust
than onset to ambient noise and audio compression distor-
tion [12]. Audio landmark operates in the time-frequency
domain, and the extracted features consist of a set of time-
frequency pairs [6—8]. With low computational cost and ro-
bustness against noise, audio fingerprinting techniques have
been widely used in movie and video synchronization [13].
However, the synchronization accuracy achieved by conven-
tional audio fingerprinting methods is limited by the time-
frequency analysis hop size, with typical values between a
few and tens of milliseconds [10], which is enough for video
applications but far below the sample-wise synchronization
requirement in microphone array signal processing.

In this paper, we investigate audio-landmark-based syn-
chronization, aiming at sample-wise alignment within an
ad-hoc microphone array. We show that by reducing the
time-frequency analysis hop size, the classical landmark
audio fingerprinting algorithm is able to detect the time dif-
ference of arrival (TDOA) of nearby sound sources that are
captured by different microphones. Existing audio finger-
printing methods usually use a large hop size, e.g. tens to
hundreds milliseconds, in the application of music informa-
tion retrieval or video synchronization. The TDOA informa-
tion of multiple sources becomes ambiguous with such a hop
size. We further exploit this property to detect the maximum
and minimum TDOAs around the microphone array, which
can be used to further improve the synchronization accuracy.
A sample-accuracy synchronization can be achieved with the
proposed algorithm if a sufficient number of sound sources is
located around the array.
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2. PRELIMINARIES

Consider an anechoic environment with an ad-hoc micro-
phone array consisting of M independent microphones and
unknown number of N sources randomly distributed around
the array. The locations of the microphones and sources are
unknown and are denoted as M = [my,--- ,my, -+ ,myy]
and R = [ry,--- ,7rp, -, 7N, respectively. The recording
a;(t) at each microphone is asynchronous with unknown start
time 7,7 = 1,--- , M. Let the pairwise time offset between
two microphones ¢ and j be denoted as

Ty =T, —Tj. (1

The signal recorded at each microphone is denoted as
ai(t) = Somy givs(t — tip), i = 1,---, M, where s;(-),
t;p and g;;, are the b-th source signal, the propagation time
and the attenuation from the b-th source to the i-th micro-
phone, respectively. The propagation time of arrival (TOA)
t;p from the b-th sound source to the ¢-th microphone is
tp = Um=mill " where ¢ is the speed of sound and | - 1]
denotes the Euclidean distance. The TDOA of the b-th source
between the i-th and j-th microphones, 7;;3, can be expressed
as

= Il il

The goal is to blindly estimate the time offset T;; between
each microphone pair from the microphone recordings. With-
out loss of generality, we consider only two microphones i
and j.

In [2], a GCC-based framework is proposed to estimate
the extreme (maximum and minimum) TDOAs of the sources
around the microphone array, which are further utilized to es-
timate the time offset between two asynchronous recordings.
It is assumed in [2] that, among the N sources, there are al-
ways two sources locating at the end-fire positions with re-
spect to the microphone pair. The end-fire positions are de-
fined as the points on a line that connects the two microphones
excluding the ones between the two microphones (Fig. 1).
Based on the reverse triangle inequality (||, — m;|| — ||ry —
m,|| < |[|m; — m;||), the maximum or minimum TDOAs
among the N sources can be identified once the sources are
located at the end-fire locations, and can be expressed as

m; —my; m; —m;
Tax = || - ]|| +7‘v”7 Tmin:_H ]|| +T”
3
Naturally, the time offset T;; is obtained as
Tij _ Tmax '2f' 7-min. 4)

In this way, the goal of time offset estimation becomes
the task of extreme TDOA estimation. In this paper, we use
the same assumption in [2], and show how the maximum
and minimum TDOAs can be estimated with the proposed
landmark-based audio fingerprinting algorithm.
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> End-fire source locations

Fig. 1. Illustration of the end-fire source locations.

3. AUDIO LANDMARK AND SINGLE-SOURCE
TDOA

The audio landmarks are usually used for coarsely synchro-
nizing two audio recordings [5-7]. However, the extracted
landmark features contain some valuable information about
the TDOA information of the sound sources.

The classical audio landmark fingerprinting method op-
erates in the time-frequency domain and converts a time-
domain signal a;(t) into a sparse, high-dimensional, and
discrete-time landmark feature set F;(n) [6]. At first, the
time-domain signal a;(¢) is transformed into the short-time
Fourier transform (STFT) A;(n, k), where n is the frame
index and k is the frequency index, which downsamples the
time axis via the STFT hop size R. The onsets of local fre-
quency peaks are detected from the STFT and are represented
as sparse time-frequency points, f(np,kq), where p and ¢
denotes the frame and frequency indices of the detected local
peak, respectively. Landmarks are formed by pairing up each
two nearby local peaks, represented as y;(n1, k1; na, k2). Fi-
nally, the obtained landmarks associated with the frame n are
hashed into a time-indexed feature set represented as F;(n).

Assume that only the b-th source is active and the time
offset between two microphones is zero. The STFT of a;(t)
and a;(t) can be expressed as

Ai(n, k) = ginSp(n — nip, k) 5)
Aj(n, k) = gpSp(n — njp, k)’

where Sy(n, k) is the STFT of sp(t), nyp = [ti/R], and
nj» = |t;»/R], where the operator |-| denotes the integer
part.

By matching landmarks between the two channels [6], the
landmarks corresponding to the same time-frequency peak
pairs can be extracted. This is expressed as

Y;(n1—nip, k1;na—nip, k2) = y;(n1—njp, k13 na—ngp, ka),
(6)
and consequently

Fi(n) = Fj(n — | ). ™
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Fig. 2. Block diagram of the proposed coarse-to-fine synchronization method.

where IF;(-) and IF;(-) denote the extracted audio fingerprints
of a;(-) and a;(-), respectively, and y,(-) and y;(-) denote
two matched local peak pairs in the two channels.

Let

Il(T) :I(Fl(n),]F](n—T)) (8)

be the correlation function denoting the matching score be-
tween FF;(n) and a time-shifted version F;(n—7). The TDOA
of the b-th source is obtained by matching the audio land-
marks, i.e.

Tijb = arg mTaX{Iij (1)} R. 9)
The correlation function (matching score) I;;(-) is calculated
from the number of matched landmarks between two chan-
nels, with more details provided in [6]. The TDOA is detected
as the peak of the correlation function. This is similar to the
GCC method, but here the correlation function is calculated
by matching the audio landmarks.

4. TIME OFFSET ESTIMATION

4.1. Extreme TDOA estimation

To estimate the maximum and minimum TDOAs in a multi-
source environment, we employ a fine landmark strategy. As
shown in (7), the resolution of the landmark-based TDOA es-
timation is confined by the STFT hop size R. An improved
resolution can be achieved by reducing the hop size. A hop
size as small as R = 1 can be used so that a sample-wise res-
olution can be achieved. In this way, the TDOAs of different
sources can be distinguished from each other in the correla-
tion function I;;(7), appearing as different peaks.

We apply a simple peak detector to I;; (), obtaining a set
of P peaks expressed as T = {7y,--+ ,7p}. The maximum
and minimum TDOAs can be estimated from T as

Tmin = min(T) and Fax = max(T). (10)

4.2. Coarse-to-fine synchronization

The fine landmark strategy requires a small time-frequency
analysis hop size. The computation of landmark feature ex-
traction and matching would become extremely intensive
when a large time offset exists between two channels and a
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large searching area of T is required to calculate I;;(7). To
improve the computation efficiency, we propose a coarse-to-
fine synchronization scheme (Fig. 2).

In the coarse synchronization stage, the audio landmarks
are extracted from the STFT spectra of a;(t) and a;(t), with
a large hop size R=R;. After landmark matching, the coarse
time offset is estimated from the correlation function 7 () as

Ty = argmax{I1(7)} - R;. (11)

The channel a;(t) is time shifted with 7} to coarsely align it
with a;(t). This is expressed as

a;(t) = a;(t —Th). 12)

In the fine synchronization stage, the audio landmarks are
extracted from the STFT spectra of a;(t) and a;(t), with a
small hop size R=Rs=1. After landmark matching, the max-
imum and minimum TDOAs can be estimated from I2(7),
using (10). The precise time offset is estimated as

Tmax T Tmin

T = >

13)
Finally, a;(t) is time shifted with 7%, obtaining a;(t).

The coarse synchronization stage is suitable for record-
ings with large time offsets, while the fine synchronization
stage can improve the synchronization accuracy. Combining
the two stages, the time offset between two recordings is

Tij = T1 + To. (14)

5. EXPERIMENTAL RESULTS

Two experiments are conducted to evaluate the performance
of the proposed method. In the first experiment, the audio
features extracted by three popular audio fingerprinting al-
gorithms (audio landmark (AL) 1 [6], onset [11], PRH [12])
are compared to show the unique TDOA detection ability of
the AL algorithm. In the second experiment, we compare
with real recorded data the synchronization performance of
the mentioned three audio fingerprinting algorithms, and also

'The AL algorithm is implemented using the code from [14].
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Fig. 3. Feature analysis of three audio fingerprints on TDOA
estimation. The left column is the illustration of the features
and the right column is the corresponding correlation results
for (a)-(b) audio landmark, (c)-(d) onset, (e)-(f) PRH.

compare the synchronization performance of the proposed
method and the GCC-based method [2].

The GCC-based synchronization method [2] also calcu-
lates the extreme TDOAs for the estimation of the time off-
set. When implementing this algorithm, we use the AL al-
gorithm as a preprocessing step to coarsely synchronize the
data. This preprocessing step is the same as the coarse syn-
chronization stage of the proposed method. The absolute er-
ror ¢ = |T;; — T};| is used as the objective measure for perfor-
mance comparison, where T;; is the ground-truth time offset.
The time offset between two sound tracks is uniformly ran-
domly selected in the range [—1, 1]s.

In the first experiment, we used simulated sound tracks
recoded by a microphone pair placed 5m apart from each
other. Three speech sources are talking concurrently, with
two placed at two end-fire locations and one placed in the
middle between two microphones. We apply AL, onset, and
PRH to perform fingerprint extraction and matching on the
two channels. The same hop size of 0.001s is used for the
three algorithms. Fig. 3 shows the audio feature extraction
and matching results by the three algorithms, with left col-
umn depicting the extracted features, the right column de-
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Fig. 4. Performance comparison with real data. (a) Public
square where the data is collected. (b) Source and micro-
phone locations. (c) Performance of the 3 audio fingerprint-
ing methods. (d) Performance of the proposed method and
the AL+GCC method. The results are represented by median
values of 10 independent realizations. The error bars are the
first and third quartiles.

picting the matching results, and each row representing one
algorithm. As can be seen from the 2nd-3rd rows, both on-
set and PRH extract a large amount of audio features, and
obtain one peak in the correlation functions. In contrast, as
shown in the first row, the features extracted by AL consist of
sparse peak pairs. Since the matched peak pair comes from
the same source, multiple peaks can be observed in the corre-
lation function, with each peak denoting one source. In Fig.
3(b), three peaks are clearly observed, which is equal to the
number of sources. With this experiment, the unique TDOA
estimation ability of audio landmarks is demonstrated.

In the second experiment, we recorded sound tracks us-
ing four Samsung Galaxy III smartphones at 8k H z sampling
in a 12m x 12m public square. The square and locations of
the smartphones are shown in Fig. 4 (a) and (b), respectively.
Twelve source positions were set according to the end-fire lo-
cations of each microphone pair in Fig. 4(b) and two sources
(1 male and 1 female speech) about 20s were played simul-
taneously by a loudspeaker in each recording. We selected
four microphone pairs for the comparison with microphone
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distances dp; = 5.31m, dop2 = 5.60m, doz = 3.55m and
d12 = 1.47m.

As seen in Fig. 4(c), the three algorithms generally
achieve bigger estimation errors for larger microphone dis-
tances. This is because they only detect the highest peak in
the correlation function to estimate the time offset. When
the distance between two microphones increases, the highest
peak in the correlation might deviate from the true value. For
example, the deviation can be as much as 0.017s when the
microphone distance is 6m. Among the three algorithms,
PRH performs best among the three audio fingerprint algo-
rithms, while onset is the least robust one. PRH combines
features in neighbouring frames [12], and thus is more robust
to TDOA deviation. Onset only uses the features extracted in
individual frames, and thus is least robust. AL uses peak pairs
in neighbouring frames, and its performance is in the middle
of the other two. Overall, the estimation errors of the three
algorithms range between several and tens milliseconds.

As seen in Fig. 4(d), both the proposed method and the
AL+GCC method can achieve estimation errors less than
0.001s and the accuracy is ten times higher than the conven-
tional audio fingerprinting methods. This is because they both
exploit the maximum and minimum TDOAs to estimate the
time offset instead of using the highest peak of the correlation
function. Both algorithms achieve higher errors when the
microphone distance is large. This is because the extracted
features become weak when energies of the sound received
by the microphones decrease with the microphone distance,
leading to deviated estimations of the extreme TDOAs. The
proposed method performs slightly better than the AL+GCC
method.

6. CONCLUSIONS

In this paper, landmark-based fingerprinting has been refined
to detect the TDOAs of the sources in a multi-source environ-
ment. Comparison among three fingerprint features demon-
strates that only the landmark features can be fined-tuned for
TDOA estimation. By estimating the maximum and mini-
mum TDOAs, the proposed method can estimate the time off-
set between two microphone recordings efficiently. A com-
plete coarse-to-fine synchronization framework is further pro-
posed to deal with recordings with large time offsets. When
end-fire sources exist, the proposed method can achieve accu-
racy comparable to the recent fine synchronization based on
GCC using sound tracks recorded in a real environment, and
can significantly improve the accuracy of the conventional
landmark method.

One assumption of the proposed method is the require-
ment of a sufficient number of sound sources around the ar-
ray (i.e. end-fire sources). Further work is required to finely
synchronize recordings without the need of end-fire sources.
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