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Abstract

We introduce a novel type of orientation–selective rank features that are sensitive to
contrast modulations (second–order stimuli). Variance Ranklets are designed in close
analogy with the standard Ranklets, but use the Siegel–Tukey statistics for dispersion
instead of the Wilcoxon statistics. Their response shows the same orientation selectivity
pattern of Haar wavelets on second–order signals that are not detectable by linear filters.
To the best of our knowledge, this is the first family of rank filters designed to detect
orientation in variance modulations.

We validate our descriptors with an application to texture classification over a subset
of the VisTex and Brodatz databases. The combination of standard (intensity) Ranklets
with Variance Ranklets greatly improves on the performance of Ranklets alone. Com-
parison with other published results shows that state–of–the–art recognition rates can be
achieved with a simple Nearest Neighbour classifier.

1 Introduction
Rank features are arguably the most robust kind of descriptors available to Computer Vision
practitioners, being invariant to all monotonic transformations of image brightness, such as
gamma correction and histogram equalisation. New, sophisticated kinds of descriptors have
been developed in recent years, allowing applications to texture segmentation [1, 20] and
object recognition [8] alongside the classical benchmark of wide-baseline stereo matching [4,
25].

Orientation selectivity has recently been introduced to rank features by Ranklets [22].
These descriptors are designed in close analogy with Haar wavelets; they are based on the
Wilcoxon statistics and have a simple interpretation in terms of the pairwise comparison of
pixel intensity values. Ranklets have been applied to face detection [23], point tracking [7],
the processing of mammographic images [14, 17] and texture classification [15].

Orientation selectivity is one of the key features of widely used linear filters such as Haar
wavelets, derivatives of Gaussians and Gabor filters. These last are also widely accepted
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(a) (b) (c)
Figure 1: (a) First–Order (top) and Second–Order (bottom) sinusoidal modulations charac-
terised by local variations in luminance and contrast respectively; (b) response of a standard
(Intensity) Ranklet on the signals in (a); (c) response of our proposed Variance Ranklet (ver-
tical orientation, filter size matched to wavelength of stimulus).

as a model of low-level human vision, namely the response of simple cells in the primary
visual cortex [6]. Linear filters are in fact a natural choice to model sensitivity to intensity
modulations (so called first–order stimuli), to which also Ranklets respond. The human
visual system, however, also shows a similar response to contrast or variance modulations
(second–order stimuli - Figure 1a). These are thought to be important, for instance, in the
perception and discrimination of textures [9].

Contrary to first–order stimuli, the response to second–order stimuli is not easily mod-
elled by linear filters. Perhaps the most common approach in the psycho-physical literature
is the linear-nonlinear-linear (LNL) model, that consists of two linear filter stages separated
by a non-linearity stage [11]. Features designed for second–order stimuli are rare in the ap-
plied literature. Local variance estimators are indeed common, but these quantify variance
itself rather than how (and especially along which orientation) it is modulated. Interestingly,
even when non-parametric texture descriptors such as Local Binary Patterns are used, the
variance measures employed are not themselves rank-based [20].

We present what we believe is the first set of rank features for the orientation selective
detection of second–order stimuli. Variance Ranklets are defined in analogy with Ranklets,
using the Siegel-Tukey statistics for dispersion instead of the Wilcoxon statistics for trans-
lation. Both statistics are computable with a sorting operation and a sum and have the same
null distribution, leading to a uniform treatment of information from first– and second–order
stimuli. Variance Ranklets present the same pattern of orientation selectivity that charac-
terises standard (Intensity) Ranklets and Haar wavelets.

We validate our features with texture classification experiments over a subset of the Vis-
Tex [16] and of the Brodatz [5] databases. Starting from the responses of Intensity and
Variance Ranklets, we compute the statistical descriptors described in [24] and classify the
resulting feature vectors with a simple Nearest Neighbour (NN) classifier. We show that
using Variance Ranklets together with Intensity Ranklets leads to significantly lower error
rates than those obtained with standard Ranklets alone. We compare our recognition rates
with recently published results obtained using four different algorithms [3, 13, 15, 19].

The rest of this paper is organised as follows: in Section 2 we give the relevant back-
ground on Rank Statistics. After reviewing standard Ranklets in Section 3, we introduce
Variance Ranklets in Section 4. An application to texture classification is discussed in Sec-
tion 5 followed by experimental results in Section 6. Finally, conclusions are presented in
Section 7.
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2 Rank Statistics and Pixels
One way of describing local variations in images is to look at the statistical properties of
neighbouring image regions. In this work, we use Rank Statistics to compare adjacent sets of
pixels based on the intensity measurement performed at each image location. In accordance
with the statistical literature, we denote the two sets of pixels as the Treatment and Control
samples; their geometric arrangement on the image (that determines the orientation–selective
behaviour of the filters) is specified in Section 3 below.

The point with Rank Statistics is to rely only on the relative order of the measurements
rather than on their specific value. We therefore sort intensity values and replace them with
their rank: for example, for 4 Treatment and 4 Control observations corresponding to inten-
sity values T = {64,128,12,56} and C = {10,75,25,100} we have

Intensity 10 12 25 56 64 75 100 128
Sample C T C T T C C T
Rank 1 2 3 4 5 6 7 8

If we are now interested in knowing whether the observations in T are significantly larger
or smaller than those in the C set, a natural choice is to use the Wilcoxon statistics W , defined
as the sum of treatment ranks: in our case W = 2+4+5+8. Clearly a large value of W will
indicate that the pixels represented in set T are on average brighter than those in set C, and
conversely for a small value of W . The Wilcoxon statistics has been used in Ranklets (see
Section 3 below) and implicitly, as shown in [22], in the rank transform [25]. Technically,
the Wilcoxon statistics allows testing the null hypothesis that the observations in T and C are
drawn from identical (though unspecified) distributions against the alternative that one of the
distributions is translated.

If we are interested in testing against the alternative that the pixels in T differ from the
pixels in C in variability, we can assign ranks in the following way:

Intensity 10 12 25 56 64 75 100 128
Sample C T C T T C C T
Rank 1 4 5 8 7 6 3 2

The sum of the treatment ranks, ST = 4+8+7+2, is known as the Siegel–Tukey statis-
tics [21]. Clearly, high values of the statistics indicate that the observations in the T set
are grouped more tightly around their median than the observations in the C set. Thus the
Siegel–Tukey statistics can be used to test the data for spread, under the assumption that the
two samples are drawn from distributions with equal median.

Other ranking schemes for testing against dispersion have been suggested — notably
by Ansari and Bradley [2]. These tests have however been shown to be equivalent [10].
Also, all such tests require some assumption on the kind of admissible distribution pairs to
be compared, for instance that they should have the same median [18]. Our choice of the
Siegel–Tukey statistics is motivated by the fact that it has the same null distribution as the
Wilcoxon statistics [12, 21], thus ensuring a more uniform treatment of the two kinds of
stimuli that we consider.

We have until now made an implicit assumption that no two pixels in the local window
of interest have the same intensity. When ties occur, these can be treated by replacing the
ranks of the tied pixels with their average (or midrank). The statistical treatment of midranks
is discussed in [12].
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Figure 2: The three two-dimensional Haar wavelets h1(~x), h2(~x) and h3(~x) (from left to
right). Letters in parentheses refer to the “Treatment” and “Control” pixel sets (see Sec-
tion 3).

3 Standard (Intensity) Ranklets

Ranklets (or, for the sake of clarity, Intensity Ranklets) are a family of multiscale rank filters
based on the Wilcoxon statistics, that display an orientation selectivity pattern similar to Haar
wavelets [22].

The orientation selective response is obtained by an appropriate choice of the T and C
sets of observables (pixels intensity values) that are compared by the test. More specifically,
in the case of Ranklets these sets are defined based on the three Haar wavelets hi(~x), i = 1,2,3
supported on a given local window W, as sketched in Figure 2. The counter–images of
+1 and −1 under these three functions provide three choices for T and C, namely Ti =
h−1

i ({+1}) and Ci = h−1
j ({−1}).

Let π(~x) be a ranking of the pixels in W according to their intensity I(~x). The Wilcoxon
statistics is computed separately for each of the three pairs of samples: W i = ∑~x∈Ti π(~x).

We centre W i around its average value by computing W i
Y X = W i − (n + 1)n/2, where n

is the number of pixels in Ti. The Mann-Whitney statistics W i
Y X is equal to the number of

pixel pairs (~x,~y), with ~x ∈ Ti and ~y ∈ Ci, such that I(~x) > I(~y) (for a proof, see [12]); its
minimum and maximum values are thus 0 and n2 respectively, with n = #Ti = #Ci. The
standard Intensity Ranklets are defined as

Ri
W = 2W i

Y X/n2−1, (1)

so that their value ranges from −1 to +1 as the contrast between Ti and Ci is reversed. Thus
Ranklets reproduce the orientation selectivity characteristics of the three Haar wavelets from
which the Ti and Ci sets are derived.

The response of an Intensity Ranklet on a sample sinusoidal stimuli is shown in Fig-
ure 1(b). As can be seen, similarly to linear filters, Intensity Ranklets do not significantly
respond to variance modulations.

4 Variance Ranklets

The definition of Ranklets given above can easily be generalised to second–order stimuli by
replacing the Wilcoxon statistics W with the Siegel–Tukey statistics for spread introduced in
Section 2.

This, however, requires a preprocessing step to ensure that the distributions of the two
samples Ti and Ci have the same median. In practice, this is achieved by subtracting from
the pixels in Ti and Ci the respective sample medians. The pixel values are then sorted
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and the Siegel–Tukey ranks πST (~x) are computed in place of the standard ranks π(~x). The
Siegel–Tukey statistics is then obtained as ST i = ∑~x∈Ti πST (~x), as illustrated in Section 2.

As ST i and W i have the same null distribution [21], we can centre the Siegel–Tukey
statistics around its mean by subtracting the same constant used in Section 3 above, to give
ST i

Y X = ST i− (n+1)n/2; again, n is the number of pixels in Ti.
We then define the Variance Ranklets RST as

Ri
ST = 2ST i

Y X/n2−1, (2)

in analogy with Equation 1. The response of a Variance Ranklet also varies between −1 and
+1, with the extremes indicating that the intensities of all the pixels in the T set are more
tightly grouped around their median than those in the C set (+1), or vice-versa for −1.

Figure 1(c) shows the response of a Variance Ranklet tuned to the vertical orientation
on both first– and second–order stimuli. As can be seen, the filter responds selectively to
variance modulations only.

5 Application: Texture Classification

We evaluate the effectiveness of the Variance Ranklets introduced above in an application
to Texture Classification. This is motivated both by the importance of second–order stimuli
for texture classification [9] and by the results recently obtained by Masotti and Campanini
[15], that show that (Intensity) Ranklets compare favourably with Wavelets and Ridgelets in
texture classification over a subset of the Vistex and Brodatz databases [5, 16]. For ease of
comparison, we adopt the same choice of features and datasets as [15], although in combi-
nation with a simpler NN classifier as opposed to a Support Vector Machine (SVM). This is
done to highlight the descriptive power of the features themselves rather than of the classifier.

5.1 Feature Extraction

We evaluate the performance of our system using three sets of features, derived from Inten-
sity Ranklets only, Variance Ranklets only and a combination of both. Feature extraction
consists in rank-based filtering followed by quantisation and the extraction of statistical de-
scriptors from the filter responses. These steps are described in detail below.

5.1.1 Filtering with Ranklets

We filter each texture image with a set of multiscale ranklets. Following [15] we use filters
supported on a square window W with 7 different choices of the side of W, namely 4, 6, 8,
10, 12, 14, and 26 pixels. For each of these resolutions all 3 Ranklet orientations are com-
puted (see Figure 2), yielding 21 filter responses for each of the Wilcoxon and Siegel–Tukey
Ranklet types. We then take the absolute value of filter responses (to force insensitivity to
contrast polarity) and quantise them into 11 equally spaced bins over the interval [0,1].

Figure 3 shows the absolute value of the responses of Intensity and Variance Ranklets
with various orientations and resolutions over a sample texture from the Brodatz album.
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Texture image (D55, Brodatz database)

Intensity Ranklets Variance Ranklets

4×4 (V) 4×4 (H) 4×4 (D) 4×4 (V) 4×4 (H) 4×4 (D)

6×6 (V) 6×6 (H) 6×6 (D) 6×6 (V) 6×6 (H) 6×6 (D)

8×8 (V) 8×8 (H) 8×8 (D) 8×8 (V) 8×8 (H) 8×8 (D)

Figure 3: Absolute value of the response of Intensity and Variance Ranklets with the support
size specified. Vertical, Horizontal and Diagonal orientations. Note the significant second–
order component of the texture.

5.1.2 Statistical Descriptors

The quantised responses of each filter are used to derive a set of 11 statistical texture features
that characterise the response of the filter on each image, as suggested by Xu et al. [24] (see
also [15]). We define the histogram rh of Ranklet responses

rh(i) =
n(i)

Σ11
j=1n( j)

, i = 1, ...,11 (3)

where n(i) is the relative frequency of the i-th quantised Ranklet value. The co-occurrence
matrix rcmd,θ , that encodes the probability of the transitions between every pair of coeffi-
cients as one moves across the image, is obtained as

rcmd,θ (i, j) =
nd,θ (i, j)

Σ11
l=1Σ11

k=1nd,θ (l,k)
, i, j = 1, ...,11 (4)

where nd,θ (i, j) is the number of co-occurrences of Ranklet values quantised in bins i, j at a
distance of d pixels along direction θ .

The first two feature descriptors are derived from the Ranklet histogram rh:
1. Mean Convergence

mc = Σ
11
i=1

|rq(i).rh(i)−µ|
σ

(5)
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where µ and σ are the mean and standard deviation of the histogram rh and rq(i) is
the quantisation value corresponding to bin i;

2. Code Variance

cv = Σ
11
i=1(rq(i)−µ)2.rh(i) (6)

The other 9 feature descriptors are derived from the mean of four Ranklet co-occurrence
matrices rcmd,θ , where d is fixed to 1 and θ ∈ {0◦,45◦,90◦,135◦}, i.e: rcm = 1

4 (rcm1,0◦ +
rcm1,45◦ + rcm1,90◦ + rcm1,135◦). These are:

3. Code Entropy

ce = Σ
11
i=1Σ

11
j=1rcm(i, j).log10(rcm(i, j)) (7)

4. Uniformity

un = Σ
11
i=1Σ

11
j=1rcm(i, j)2 (8)

5-6. First– and Second–order element difference moments

f dm = Σ
11
i=1Σ

11
j=1|i− j|.rcm(i, j) (9)

sdm = Σ
11
i=1Σ

11
j=1(i− j)2.rcm(i, j) (10)

7-8. First– and Second–order inverse element difference moments

f idm = Σ
11
i=1Σ

11
j=1

1
1+ |i− j|

.rcm(i, j) (11)

sidm = Σ
11
i=1Σ

11
j=1

1
1+(i− j)2 .rcm(i, j) (12)

9-11. Energy distribution of the ranklet co-occurrence matrix

edrcm1 = Σ
3
i=1Σ

3
j=1rcm(i, j) (13)

edrcm2 = Σ
6
i=1Σ

6
j=1rcm(i, j)− edrcm1 (14)

edrcm3 = Σ
11
i=1Σ

11
j=1rcm(i, j)− edrcm1− edrcm2 (15)

Applying the above descriptors to the quantised output of a filter on a texture image
results in 11 features for each Ranklet filter. As proposed in [15], we force invariance to 90◦-
rotations by averaging the 11 descriptors across the 3 filter orientations displayed in Figure 2.
Recalling that 7 scales are used for the filters, each feature image is described by a 7×11 =
77-dimensional feature vector derived from Wilcoxon Ranklets and a corresponding 77-
dimensional vector derived from Siegel–Tukey Ranklets. These can be used either separately
or jointly for classification, as described in Section 6.
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Filters used Classification Accuracy (%)
Vis-1 Vis-2 Bro-1 Bro-2

Standard Ranklets 96.04 91.33 96.15 99.73
Variance Ranklets 92.92 90.12 96.15 98.4
Standard + Variance Ranklets 98.33 97.78 98.77 99.73

Table 1: Classification accuracy over subsets of the VisTex and Brodatz databases, using a
Nearest Neighbour classifier. Complementing the standard (Intensity) Ranklets with Vari-
ance Ranklets more than halves the error rate on three of the datasets.

5.2 Datasets

We present classification experiments over the four datasets used in [15]. Two of datasets,
namely Vis-11 and Vis-22, comprised of 30 and 31 textures, are extracted from VisTex
database [16]. Each texture image, of size 512× 512 pixels, is decomposed into non-
overlapping regions of size 128× 128, resulting in 480 and 496 images respectively with
every class (texture) represented by 16 samples.

The other two datasets, Bro-13 and Bro-24, comprised of 26 and 30 different textures
respectively, are extracted from the Brodatz album [5]. These texture images, sized 640×640
pixels, are also decomposed into non-overlapping regions of size 128×128, yielding 650 and
750 images respectively; every class is here represented by 25 samples.

6 Experimental Results
We evaluate the descriptive power of the features by means of classification experiments
using a simple NN classifier. The Euclidean distance is used for classification; tests are
performed using leave-one-out (LOO) cross-validation across all 128× 128 samples of all
the different textures. Each dataset is considered separately.

Experimental results using feature vectors obtained from standard (Intensity) and Vari-
ance Ranklets either separately or jointly are displayed in Table 1 (information from the two
types of ranklets is combined by concatenating the respective feature vectors into a 144-
dimensional vector). As can be seen, features obtained from the Intensity Ranklets alone
perform better than those obtained from the Variance Ranklets alone. This is in accordance
with the findings of psycho-physical studies on the relative importance of the two types of
stimuli the filters are designed to detect [9]. The best results are however obtained by com-
bining the two sets of features: the addition of second order information more than halves

1Bark.0006, Brick.0000, Brick.0004, Brick.0005, Clouds.0001, Fabric.0000, Fabric.0006, Fabric.0007, Fab-
ric.0013, Fabric.0015, Fabric.0017, Fabric.0019,Flowers.0005, Flowers.0006, Food.0000, Food.0001, Leaves.0003,
Leaves.0012, Metal.0000, Metal.0002, Metal.0004, Misc.0001, Misc.0002, Sand.0000, Sand.0002,Stone.0005,
Tile.0004, Tile.0008, Water.0005, Wood.0002

2Bark.0001, Bark.0004, Bark.0005, Bark.0006, Bark.0010, Brick.0000, Brick.0004, Brick.0005, Fab-
ric.0000, Fabric.0002, Fabric.0007, Fabric.0009, Flowers.0005, Flowers.0006, Food.0001, Food.0002, Food.0004,
Food.0005, Food.0006, Leaves.0002, Leaves.0003, Leaves.0004, Leaves.0008, Leaves.0010, Metal.0000,
Metal.0005, Misc.0001, Sand.0002, Tile.0007, Water.0005, Wood.0002

3D1, D3, D4, D5, D6, D8, D9, D11, D16, D17, D18, D20, D21, D25, D26, D27, D28, D29, D33, D36, D78,
D87, D92, D95, D101, D102

4D1, D3, D6, D11, D16, D17, D20, D21, D24, D28, D29, D32, D34, D35, D46, D47, D49, D51, D52, D53,
D55, D56, D57, D65, D78, D82, D84, D85, D101, D104
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the error rate on three of the datasets.
In Table 2 we report other recent published results referring to some of the datasets we

use. These include approaches based on Ranklets and SVM [15], Wavelets and SVM [13],
the Ridgelet transform and the L1 distance [3] and invariant wavelet features in combination
with NN [19]. Comparison with some of these works can only be indicative, as the size of the
sub-images used for classification varies from 32×32 to 256×256 (128×128 is used here);
however our results are quite comparable with the state-of-the-art and actually outperform
some of the other algorithms on some of the datasets.

Published Algorithm Classification Accuracy (%)
Vis-1 Vis-2 Bro-1 Bro-2

Standard Ranklets + SVM [15] 98.96 99.38 98.59 100.00
Ridgelets + L1 distance [3] 99.00 - - -
Wavelets + NN [19] - 99.52 93.55 -
Wavelets + SVM [13] - - - 96.34
Our Approach 98.33 97.78 98.77 99.73

Table 2: Comparison with recently published results on the same datasets. See text for details
of the differences between our approach and [15].

The most closely related approach is the work by Masotti and Campanini [15]. Apart
from minor differences in the upper limit of the energy bands in Equations 14 and 15, they
use the same statistical descriptors described in Section 5.1.2 over standard Ranklets in con-
junction with SVM [15]. Their results are significantly better than those we obtain with
standard Ranklets only (Table 1) due to their choice of the classifier (SVM vs our simpler
NN). The significant reduction in error rate we obtain with Variance Ranklets suggests that
by applying SVM classifiers to the combination of features extracted from Intensity and
Variance Ranklets even better results would be achieved.

7 Conclusions

We introduced a new type of orientation-selective rank filters suitable for the detection of
contrast modulations (second–order stimuli). Variance Ranklets are defined in analogy with
the standard (Intensity) Ranklets, using the Siegel–Tukey statistics for dispersion in lieu of
the Wilcoxon statistics for translation that appears in the original Ranklets. To the best of our
knowledge, these are the first orientation selective rank–based features sensitive to variance
modulations.

We validate our features with an application to texture classification, using texture im-
ages from two standard databases. Our experiments show that the use of Variance Ran-
klets together with Intensity Ranklets greatly improves classification accuracy with respect
to standard Ranklets alone. Comparison with other recently published results shows that our
features achieve low, state-of-the-art error rates when a simple Nearest Neighbour classifier
is used.

In future work we will investigate the use of Variance Ranklets in combination with more
sophisticated classifiers such as SVMs and their application to tasks for which Ranklets have
already proved effective, such as pattern recognition on noisy images.
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