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ABSTRACT

In this paper we discuss a general framework for feature
selection based on nonparametric statistics. The three stage
approach we propose is based on the assumption that the
available data set is representative of a certain concept and
aims at learning from the data the selection of a subset of
descriptive features out of a large pool of measurements.
The first stage requires the computation of a large number of
image features. Simple significance tests and the maximum
likelihood principle are at the basis of the second stage in
which a saliency measure is used to reject the features which
do not appear to be descriptive of the given data set. The
third and final stage, by using the Spearman independence
rank test, selects a maximal number of pairwise independent
features. We report experiments on a face dataset (the MIT-
CBCL database) which confirm the quality and the potential
of the approach.

1. INTRODUCTION

The design of discriminative image representations through
the skillful selection and disposition of image features is
of paramount importance in pattern recognition, and a vast
literature exists on specific problems such as, for instance,
face or fingerprint processing. However, the need to deal au-
tomatically with generic patterns has motivated the develop-
ment of several general–purpose feature selection methods
(see [1, 2] and references therein, for example).

Automatic feature selection aims at extracting, out of a
large pool of measurements, a reduced subset of descrip-
tive features for the problem at hand. In pattern recog-
nition, descriptiveness is often measured as discriminative
power with respect to a “reject class” represented by an ad-
hoc set of negative training examples [3, 4]. This requires
casting into the two-class framework problems like object
detection that would more naturally fit into the concept–
learning scheme. In the limit case, descriptiveness becomes
a by-product of the classifier training process, as with ap-
plications of Adaboost [3] and Support Vector Machines [5]
(through the optimization of the α coefficients). However,
feature selection arguably belongs to a more fundamental
layer than classification, and can be founded on information

theory [6], algebraic properties of the feature set (orthogo-
nality, completeness [7]), or, as in our case, statistical inde-
pendence.

In this paper, we present an all-purpose, nonparamet-
ric feature selection algorithm suitable for concept learning.
We define a nonparametric measure of feature descriptive-
ness inspired by significance tests and the maximum like-
lihood principle. This notion of saliency holds under very
general assumptions on the (unspecified) distribution of the
negative test cases, and applies to uni-modal and multi-modal
distributions as well.

By ranking the features in order of decreasing descrip-
tiveness and performing a coarse thresholding, a large set
of descriptive features is obtained. We then proceed to dis-
till a subset of these by applying Spearman’s independence
rank test [8] to all feature pairs. A graph is constructed with
a node for each feature and arcs joining each pair of inde-
pendent features. A maximal descriptive set of independent
features is then obtained as the union of the maximal cliques
of the graph.

We report feature selection experiments over the facial
images in the MIT-CBCL database [9], starting from a set of
rank features (ranklets, [10]) that have an orientation selec-
tivity pattern similar to Haar wavelets. Our results confirm
the suitability of the selection process and the descriptive-
ness and stability of the selected features.

2. MEASURING FEATURE DESCRIPTIVENESS

In a concept learning problem, or whenever the “reject”
class is not clearly specified, feature selection can only rely
on very general assumptions. The maximum likelihood prin-
ciple seems to be the most non-committal option — in gen-
eral, we will want to accept a candidate object if the likeli-
hood of the observed feature values is high under our model.
Therefore, features with a peaked distribution seem to be
preferable, as most instances of the object will correspond
to high values of the likelihood. Seen in a different way,
a sharply peaked distribution shows that the corresponding
feature is consistent across several instances of the object,
and thus captures some of its intrinsic characteristics.

However, since feature densities are in general multi-
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Fig. 1. The dashed areas of the distribution p(x) of a feature
contribute to the event Bt. For a fixed Bt = β, tβ measures the
descriptiveness of the feature.

modal, the sample variance is not a suitable measure of dis-
persion. For this reason, starting from the empirical marginal
density p(x) for a given feature, we perform a change of
variables and define the probability density function f(t) as

∫ t

0

f(z)dz =

∫ +∞

−∞

p(x)U0(t− p(x))dx

where U0(·) is the unit step function. For a fixed t ≥ 0, the
integral on the l.h.s. is equal to the probability of the event

Bt = p−1([0, t]) = β, (1)

i.e. the event that the likelihood will be smaller than t (see
the dashed area in Fig. 1).

Our measure of feature descriptiveness is obtained as
follows: let 0 < β ≤ 1 be fixed; for each feature i, solve
Eq. 1 for t = ti,β and rank the features in order of ti,β .

Note that β represents the contribution to the rate of
false negatives that would result by discarding all instances
of the object for which the likelihood of feature i is below
ti,β . As such, β is independent on the distribution of the
negative class, its role being related to the significance level
of a hypothesis test (see [11] for details).

After ranking the features, we proceed to select a subset
of descriptive features by a coarse thresholding on ti,β .

3. TESTING FOR FEATURE INDEPENDENCE

Out of the subset of descriptive features identified in the
ranking phase, we then proceed to select a reduced descrip-
tive subset based on statistical independence. The rationale
is that once the feature set is pruned to a subset of indepen-
dent variables, each feature in it contributes new informa-
tion to the description of the object. At the same time, clas-
sification is simplified by the factoring of the multivariate
density of the model into a product of univariate marginal
distributions. An heuristic criterion for feature indepen-
dence is used, for instance, in [12]; however, no quantitative
measure is employed.

In our work, we make use of Spearman’s independence
rank test [8], which is an effective nonparametric way to es-
timate independence between two observables (in our case
two features) that may have different measurement units.

Assume we are given n realizations of two random vari-
ables, R and S. Let πR(ri) and πS(si) represent the rank
of each observation among those of the respective variable.
The Spearman’s statistics D is defined as

D =

n∑
i=1

(πR(ri)− πS(si))
2.

The null distribution of D is obtained under the assumption
that for independent variables all rankings occur with proba-
bility 1/n!. For large n a normal approximation holds, with
the tails corresponding to correlated or anticorrelated vari-
ables (i.e., equal or opposite rankings). Thus one runs a test
against the independence hypothesis with significance α by
checking whetherD deviates from its average by more than
some critical value dα.

By performing Spearman’s test over all pairs of descrip-
tive features, we can thus quantitatively assess pairwise in-
dependence. We are then left with the problem of selecting
a maximal subset of independent features. This is done by
building a graph of which the single measurements repre-
sent the nodes. Two nodes are joined by an edge if the cor-
responding features don’t reject the independence hypoth-
esis at a fixed level of significance 0 < α < 1. Finally,
maximally complete subgraphs - or cliques - are located in
each graph. The nodes of the clique correspond to features
pairwise independent with confidence greater than 1− α.

Note that since all features not perfectly correlated can
contribute some new information [13], the choice of α in
practice expresses a balance between the dimensions of the
resulting feature set and the descriptiveness of the final model.

4. EXPERIMENTS

In this section we report experiments on the MIT-CBCL
face database. The set of measurements we start with are
horizontal and vertical ranklets [10], rank features similar
to wavelets invariant to image equalization (and thus well
suited for the grey-level face images of very small size,
19×19 pixels, of the MIT-CBCL database). Other choices
are clearly possible but ranklets, which appear to be well
suited for face detection [10], seem to be sufficient to as-
sess the potential of the proposed framework. The set we
used consists of 2429 face images and 4548 non-face im-
ages (which we doubled in number by creating mirror im-
ages to enforce vertical symmetry). We started by comput-
ing a set of 10368 measurements obtained by varying the
size support windows of the ranklets from 2× 2 to 18× 18
and shifting it all over the image.
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Descriptiveness The solid line in Fig. 2 (left) shows the
measurement distribution on the positive examples of the
horizontal ranklet 5089 (ranked first according to the saliency
procedure describe in Section 2). The distribution of the
same measurements on the negative examples, which was
nowhere used in the procedure, is displayed by the dotted
line. An example of measurement ranked very low by the
same procedure (horizontal ranklet 4018) is given through
the solid line of Fig. 2 (right). The distribution of the same
measurements on the negative examples, which again was
nowhere used in the procedure, is displayed by the dot-
ted line. From the qualitative viewpoint, visual inspection
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Fig. 2. Example of good and bad feature: (left) distribution of the
horizontal ranklet 5089 on the positive examples (solid line) and
on the negative examples (dotted line); (right) same as above for
the horizontal ranklet 4018.

of a number of measurement distribution confirm that the
adopted saliency measure makes sense. The range of val-
ues of the threshold ti,β in this case is quite small (typically
0.010 for top ranked features and 0.007 for low ranked fea-
tures). We can approximately quantify the effectiveness of
our measure of saliency by estimating the extent to which
using negative examples would improve the selection. With
reference to Section 2, for a fixed β (which controls the false
negatives) we can select those features for which rejecting
candidates with a likelihood below ti,β minimises the num-
ber of false positives over the training set. In the statistical
test interpretation sketched in Section 2, this would corre-
spond to maximising the power of the test against the al-
ternative provided by the empirical density of the negative
training examples. Fig. 3 compares the cumulative effect
of this maximum power criterion with our descriptiveness
measure in the case of horizontal ranklets. The graph is
obtained by fixing β = 10% and plotting the sum of the
fractions of negative examples rejected using the two pos-
sible sortings. The two methods end up reaching the same
cumulative effect when all features are used. By figure in-
spection it appears that the net gain obtained by using the
negative examples does not seem to be macroscopic. This
point calls for further study and analysis.

The support of the 40 top discriminative features (for
horizontal ranklets) is shown in the top row Fig. 4 (10 in
each image from left to right). The middle row of the same
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Fig. 3. The effect of using (solid line) or not using (dotted line)
the negative examples in the feature selection process (see text).

Fig. 4. Support of the top 40 discriminative features for horizontal
ranklets (see text) obtained from: Top: positive examples in the
symmetrized training; Middle: positive and negative examples in
the symmetrized training; Bottom: positive and negative examples
in the original training.

figure displays the support of the top 40 features sorted us-
ing also the negative examples. By inspection it is clear
that the eye area, very reach of relevant features, is captured
without using negative examples. When only positive ex-
amples are used, several ranklets of the mouth area appear
to be also relevant. Interestingly, the most discriminative
features represent edges or consistently untextured, uniform
regions. This corresponds to the choice that is manually per-
formed in [7]. The bottom row of Fig. 4 shows the 40 top
discrinimative features obtained repeating the whole proce-
dure without enforcing vertical symmetry through mirror-
ing. The similarity between the middle and bottom row in-
dicates that the original training is already characterized by
a high degree of vertical symmetry.

Independence We now discuss the third and final stage
in which we test for feature independence. After a coarse
thresholding of all the computed features we built two graphs
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Fig. 5. Support of the top 40 discriminative features for horizontal
ranklets after Spearman’s test.

with 4000 nodes each, with nodes corresponding to the hor-
izontal and vertical ranklets respectively. Pairwise Spear-
man’s tests were run to test for independence with α = 0.5.
We ended up finding maximal cliques with 54 and 84 nodes
of horizontal and vertical ranklets respectively. The sup-
port of the 40 top features (for horizontal ranklets) sorted
by saliency is shown in the top row Fig. 5 (10 in each im-
age from left to right). The bottom row of the same fig-
ure displays the support of the top 40 features repeating
the whole procedure using also the negative examples for
sorting the features. By inspection it can easily be appre-
ciated that the proposed procedure, due to the pairwise in-
dependency requirement, appear to select features the sup-
port of which is more evenly distributed across the image.
The influence of the independency constraint is clearer by
looking at the eigenvalues of the covariance matrices of the
descriptive features and of the independent subset. In fig-
ure 6 is shown that the eigenvalues corresponding to post-
independency features descend more slowly than those rel-
ative to salient features.

5. CONCLUSIONS

We presented a data–driven approach to feature selection
based on nonparametric statistics. The main points are a
novel saliency measure and testing for independence using
Spearman’s statistics. These are supported both by theo-
retical considerations and by an empirical assessment over
the MIT–CBCL database. Experiments confirm that neg-
ative examples introduce only marginal improvements, if
any. Therefore, the proposed approach appears to be ef-
fective and well-suited for concept learning.
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Fig. 6. Eigenvalues of the covariance matrix of all the descrip-
tive features (dashed line) and of those in the pairwise independent
clique (solid line).
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