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Adaptive multi-feature tracking
in a particle filtering framework

Emilio Maggio, Student Member, IEEE, Fabrizio Smeraldi, Andrea Cavallaro, Member, IEEE

Abstract— We propose a tracking algorithm based on an
adaptive multi-feature statistical target model. The features
are combined in a single particle filter by weighting their
contributions using a novel reliability measure derived from the
particle distribution in the state space. This measure estimates the
reliability of the information by measuring the spatial uncertainty
of features. A modified resampling strategy is also devised to
account for the needs of the feature reliability estimation. We
demonstrate the algorithm using color and orientation features.
Color is described with part-wise normalized histograms. Orien-
tation is described with histograms of the gradient directions
that represent the shape and the internal edges of a target.
A feedback from the state estimation is used to align the
orientation histograms as well as to adapt the scales of the
filters to compute the gradient. Experimental results over a set of
real-world sequences show that the proposed feature weighting
procedure outperforms state-of-the-art solutions and that the
proposed adaptive multi-feature tracker improves the reliability
of the target estimate while eliminating the need of manually
selecting each feature’s relevance.

Index Terms— Particle filter, multi-feature, representation,
tracking, color histogram, orientation histogram, feature relia-
bility.

I. INTRODUCTION

V IDEO-BASED trackers are important components in
many applications, such as video surveillance, medical

image sequence analysis, augmented reality, smart rooms, and
object-based video compression. Tracking algorithms aim to
estimate the position (and the shape) of a target over time.
To this end, a target model is first defined and then searched
for in subsequent frames using a function that evaluates the
similarity between the model and a candidate. A critical issue
is the distinctiveness of the target model with respect to the
background and clutter.

A. Multi-feature target representations

A common solution to improve the target model distinc-
tiveness is to use multiple features, such as color and edges.
Color is widely used for target representation to perform the
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data association task [1], [2]. Color histograms have been used
in the mean-shift algorithm for gradient descent search [3]
and in particle filtering for likelihood estimation [4]. Color
histograms allow significant data reduction, are robust to
partial occlusions and can be computed efficiently. However,
their descriptiveness is limited by the lack of spatial informa-
tion, which makes it difficult to discriminate between targets
with similar color properties. To reduce this problem, spatial
information can be introduced by using multiple localized
histograms over semi-overlapping areas [5] or by associating
with each color bin the first two spatial moments of the pixel
coordinates of the corresponding color [6]. However, despite
the inclusion of spatial information, a target model defined
by color histograms only can still be misled by changes in
scene illumination, by out-of-plane object rotations, and by
background clutter. For this reason, gradient information can
be used to complement color information [7], [8]. As the
gradient is usually computed on the luminance information, the
edges of an object do not depend on the chromatic content;
thus the tracker can exploit the complementary information.
Existing representations usually discard the edge information
inside a target [7], [8]. The projection of the gradient on
the target border is used in face tracking [7]. Similarly, edge
density near the target border can be computed using a binary
Laplacian map [8]. More detailed edge information obtained
from the histogram of the gradient orientation is used in hand
gesture recognition [9].

Using a combination of features leads to the problem of
how to quantify their reliability. Ideally, the importance of each
feature should be adapted to the changes in target pose and the
surrounding background. This adaptation would improve the
performance under changes not modeled by the tracker itself,
hence removing the need for human intervention to re-tune
the algorithm.

B. Contribution

We propose a multi-feature tracker that adaptively weights
in a particle filtering framework the reliability of each feature.
In the specific implementation, the target representation is
based on color and orientation histograms. Moreover, we pro-
pose a feature uncertainty measure based on the determinant of
a weighted covariance matrix of the target state, as sampled by
a particle filter. Unlike traditional approaches, the uncertainty
is based on the variability of the likelihood in the state space,
and not on the likelihood itself. We modify the standard re-
sampling strategy of the particle filter to incorporate the pro-
posed estimate of the reliability. In addition to the above, we
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augment the color-based tracker with orientation histograms.
Our orientation histogram representation is obtained from
the eigenvalues of the structure tensor, providing a least-
square estimate of the gradient which increases robustness to
noise. Finally, we use the state parameters of the particles
to normalize the orientation of the gradient and to select the
scale of the derivative filters approximated by a scale-space
approach, thus achieving rotation and scale invariance.

The paper is organized as follows. Section II discusses the
previous work on feature integration for target tracking. Sec-
tion III describes the selected features for target representation.
Particle filtering and adaptive feature integration are discussed
in Sec. IV. Section V presents the experimental results and the
performance evaluation. Finally, Sec. VI concludes the paper.

II. PREVIOUS WORK

THE combination of multiple features to define the target
model provides a higher degree of descriptiveness in

video-based tracking. The integration can be performed at the
tracker level or at the measurement level. While tracker level
fusion allows the use of a wider range of trackers, fusion at
the measurement level is preferable to avoid multiple runs of
the full tracker, hence reducing the number of similar and
redundant tracking hypotheses. A summary of multi-feature
tracking algorithms is given in Tab. I.

Fusion at tracker level models each single-feature tracking
algorithm as a black box. The problem is redefined by mod-
eling the interaction between the outputs of the black boxes.
An example of tracker level fusion is the use of multiple in-
dependent condensation algorithms for each feature, followed
by the integration of the target estimations by multiplying the
posterior probabilities [10]. If each feature spans a separate
sub-space of the target state, a similar framework can also
account for conditional feature dependencies [11]. The outputs
of independent algorithms tracking localized parts of the target
can be used as the observables of a Markov network [12].
A state variable is associated to each part; assuming linear
and Gaussian interactions the compatibility between the states
(i.e., the position of the parts) is modeled by the network.
An algebraic criterion assesses the inter-part consistency, thus
allowing the removal of inconsistent measurements. An al-
ternative is to perform the fusion sequentially, considering
the features as if they were available at subsequent time
instants. The results of a blob detector, a color-based mean
shift tracker, and a feature point tracker are incrementally
incorporated by extended Kalman filtering [13]. The frame-
by-frame measurement noise used by the filter for each feature
acts as a feature reliability estimator. The measurement noise
can also be estimated in a training phase [14], thus avoiding
to adapt the feature contribution over time, but reducing the
flexibility of the tracker under changing scene conditions.

When fusing multiple features at measurement level, sin-
gle tracking algorithms combine the measurements internally.
The phase coefficients of the wavelet decomposition can be
considered as multiple features forming a time evolving tem-
plate [15]. Each phase coefficient is modeled independently
by a mixture of three components: a stable component, a fast

varying component and a component that models outliers. The
fusion is performed by the search procedure that gives more
importance to stable coefficients. As all the measurements
are generated with the same technique, they also present
the same failure modalities [15]. A Markov model can be
used to eliminate the measurements generated by clutter and
to replace occluded measurements [16]. Also, the saliency
maps of multiple features can be adaptively integrated as a
weighted average, where the weights depend on the corre-
lation between the saliency of each feature and the overall
result [17]. However, this solution is limited to single tar-
get tracking (since the decision is based on the evaluation
of the different descriptors on the whole frame), and it is
valid only when consensus between the individual features
is predominant [19]. To overcome this limitation, a particle
filter framework can be used, thus evaluating the features
only on the tracking hypotheses (particles) propagated by the
algorithm. For example, multiple multi-modal features can be
fused non-adaptively in a particle filter assuming conditional
independence of the cues given the state [18]. Also, a particle
filter followed by clustering can be used to discover multiple
target positions [19]. However, the feature contribution is held
constant and the adaptivity relies on the resampling step that
discards particles with low likelihood. The contribution of each
feature can be taken into account by multiplying likelihoods
(assuming inter-feature independence), and by selecting the
weights based on the distance between the tracking result of
each feature and the global tracking result. Each weight is
used as exponent of the corresponding likelihood [20]. This
solution is equivalent to creating a weighted log-likelihood
mixture [27]. A similar reliability measure is used in a voting
framework to fuse five features for visual servoing [21]. Also
a Bayesian network can model the dependency of multiple
reliability scores to evaluate different features [22]. This
method requires a training phase to learn the parameters of the
network. To account for cooperative feature interaction, mutual
information is used to quantify inter-feature agreement [23],
and to assess feature reliability [24]. Feature interaction can be
learned using a graphical model approximated by variational
inference and Monte Carlo sampling [25]. Using color and
shape information, the color state is iteratively updated by
sampling the shape prior; whereas the shape state is updated
by sampling the color prior. A graphical model coupled with
inter-feature belief propagation has also been used to integrate
color, shape and intensity [26]. However, as the final output
is a set of three different states (each one associated with a
feature), the fusion problem is only partially solved.

III. FEATURES FOR TARGET REPRESENTATION

LET us represent the candidate target area with an ellipse
centered in y = (x, y), with length of the major axis

h, eccentricity e, and rotation θ. These parameters define the
state of the target xt, at time t, as

xt = (yt, ht, et, θt). (1)

We describe the target area with two feature vectors. The first
vector encodes the color properties of the target, while the
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TABLE I
TRACKING ALGORITHMS COMBINING MULTIPLE FEATURES. TL: FUSION AT THE TRACKER LEVEL; ML: FUSION AT THE MEASUREMENT LEVEL.

Ref. Algorithm Model features Feature combination

TL

[10] Condensation, Kalman filter Template, blob, color Non-adaptive product
[11] Particle filter Color, contour Product of conditionally dependent densities
[12] Kanade-Lucas, Particle Filter Template Bayesian network
[13] Extended Kalman filter Blob, color, geometry Sequential integration
[14] Condensation Template, color Covariance estimation

ML

[7] Full search on motion predicted region Color histogram, edge map Non-adaptive linear combination
[8] Trust region search Color histogram, edge density Non-adaptive linear combination

[15] EM on affine parameters Phase of wavelet coefficients Higher contribution from stable coefficients
[16] Monte Carlo Edge feature points on the contour Clutter and occlusion modeling
[17] Saliency map fusion (full search) Motion, color, position prediction, shape, contrast Adaptive democratic integration
[18] Particle filter Color, motion, sound Non-adaptive likelihood factorization
[19] Multi-target clustered particle filter Motion, color, Kalman prediction, shape, contrast Non-adaptive linear combination
[20] Particle filter Color, shape Adaptive log-likelihood mixture
[21] Optimized search on window Edge, disparity, color, template, motion Adaptive voting
[22] Kalman filter Color, motion, blob Bayesian network
[23] Full search Shape, color, template Inter-feature mutual information
[24] Multiple hypothesis Intensity, texture, color Intra-feature mutual information
[25] Monte Carlo Color, shape Co-inference learning
[26] Monte Carlo Color, shape, intensity change Inter-feature belief propagation

second vector provides an invariant representation of the object
shape and internal edges.

A. Color histograms

We code the color information of the state x (for clarity
we drop the time subscript t) using part-wise histograms
that incorporate both global and local target information in
a single model [5]. Given a set Sc = {sc,j}

Nc,r

j=1 of Nc,r

semi-overlapping parts of the target candidate ellipse, the part-
wise normalized color histogram fc(x) = {f (u)

c (x)}Nc,r·Nc,b

u=1 ,
with Nc,b color bins per part, is formed by concatenating the
color histograms of each part normalized to one and then
re-normalized again by multiplying by 1/Nc,r. We use an
elliptic kernel that lowers the contribution of the pixels that
are closer to the border of the target. The first part sc,1 is
the whole target. To increase the sensitivity to rotations, four
parts (sc,2, sc,3, sc,4, and sc,5) are obtained from the partition
created by the two axes of the ellipse. Finally, to increase
the sensitivity to scale changes, the inner and outer area of
a concentric ellipse with same eccentricity, and half the axis
size of the whole ellipse are considered (sc,6 and sc,7). By
encoding the local distribution of the colors, this subdivision
avoids representation ambiguities when the object is close to
circular, and the ambiguity is now restricted to the case of
circular objects with circular symmetry of the colors.

The similarity between a candidate and the model is defined
as the distance d(.) between the histogram associated with a
candidate fc(x) and the model qc, based on the Bhattacharyya
coefficient [3],

d (fc(x), qc) =

√√√√1 −
Nc,r·Nc,b∑

u=1

√
f

(u)
c (x) · q(u)

c . (2)

Similarity measures like Eq. (2) can lead to unreliable
candidate-model matches. Figure 1 shows an example of a
lost track due to the use of color histograms only: the tracker
is uncertain about the position of the target as the box on

Fig. 1. Example of lost track using color histograms only. The color
distribution of the box on the bottom-left of the image is similar to the color
distribution of the face, thus misleading the tracker while the head is turning.

the bottom-left area of the image is a good candidate target
region when the head is turning. To improve the target model
distinctiveness additional information is needed.

B. Orientation histograms

Orientation information is a desirable complement to color
information in case of changes in illumination and background
clutter. We exploit this information using a part-wise orienta-
tion histogram approximating the distribution of the gradient.

For each pixel wj,i in the region of interest j, the mag-
nitude of the gradient, |∇I(wj,i)|, is accumulated on the
bin corresponding to its orientation ψ(wj,i). A part-wise
orientation histogram fo(x) is calculated, where the parts are
the four sectors of the ellipse. To account for half-bin wide
target rotations and spatial discontinuities, we use tri-linear
interpolation to smooth the estimated histogram [28].

To increase robustness to noise, the gradient is evaluated
using a least square estimate obtained from the structure
tensor [29]

J(w) =
∫

ρ(w − w′)
(
∇I(w′)T∇I(w′)

)
dw′, (3)

where ρ(.) is a Gaussian kernel smoothing the estimate at the
pixel position w, and J(.) is a 2 × 2 symmetric matrix. The
best local fit to the direction of the gradient is the eigenvector
kmax(w) of J(w) associated with the largest eigenvalue
λmax(w). The two eigenvalues λmax(w) and λmin(w) carry
information about the local neighborhood: λmin(w) ≈ 0 in the
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presence of a clear edge, while λmax(w) ≈ λmin(w) if no
single orientation predominates. A measure of edge certainty
G(.) can therefore be defined as

G(w) = 4
√

λmax(w)2 − λmin(w)2. (4)

G(.) highlights neighborhoods corresponding to strong straight
edges, and penalizes neighborhoods with λmin(w) 6= 0 [30].

The orientation histogram based on the structure tensor is
obtained by quantizing the range [−π/2, π/2] into No,b bins.
For each position w, the value of G(w) is cumulated in
the bin corresponding to the orientation φ(w) of the vector
kmax(w). To account for targets moving through regions with
different background intensity, vectors with opposite directions
are cumulated onto the same bin. Although some information
contained in the internal edges is discarded, a higher invariance
level is achieved. To include only strong edges, a threshold
is applied to G(.). This threshold is set at the 10th lowest
percentile of the distribution of G(.), as estimated from the
target region in the previous frame. Figure 2 (a) illustrates
with a toy target the properties of the orientation histograms:
the orientation histograms are not invariant to target rotations,
thus causing a shift of the peaks in the histogram.

Invariance to rotations has been previously addressed by
blurring the histogram with a kernel [9], or by normalizing
the gradient direction with respect to the dominant orien-
tation [28]. However, if a kernel is used, the invariance is
bounded by the kernel width, and a large kernel results
in an excessive loss of information. Also, if the histogram
presents multiple peaks with similar magnitude, the dominant
orientation has to be chosen arbitrarily. To overcome these
problems, we use the estimate θ of the target orientation
provided by its state vector x (as sampled by the particle filter
algorithm, see Sec. IV) [31]. The orientation is modeled by the
rotation of the ellipse bounding the target area. The main idea
is to shift the coefficients of the histogram according to θ. Note
that the alignment is not based on the dominant orientation,
but on the tracking hypotheses; these hypotheses are coherent
with the target states at the previous time steps, thus helping
to overcome degenerate situations.

Figure 2 (b) shows the rotation invariant orientation his-
tograms. The peaks are now stabilized by the phase shift-
ing mechanism. These orientation histograms share the scale
invariance properties of normalized histograms. However, a
problem arises under scale changes comparable with the
original target size when computing the structure tensor. The
derivative filters used in the computation of the gradient, and
the smoothing kernel ρ(.) of the structure tensor (Eq. (3)), have
a scale parameter that determines the level of detail. For the
representation to be truly invariant, the scale parameter should
be adapted to the varying dimensions of each target candidate.
If the scale of the filters is fixed in the first frame (Fig. 2 (b)),
some prominent peaks are smoothed thus loosing important
details of the representation. We achieve scale adaptation
by convolving the original image with Gaussian derivative
filters with different standard deviations σi, thus generating
a derivative scale space. The orientation histogram of an
ellipse with major axis h is then computed using the scale
space related level σ ≈ h/r, where r is a constant that
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Fig. 2. Time evolution of different orientation histograms for the moving
face showed in the first row (sample frames: 1, 60, and 120). (a) Rotation and
scale variant histogram: the peaks shift over time. (b) Rotation invariant but
scale variant histogram: the peaks are smoothed by large kernel values. (c)
Scale and rotation invariant histogram (proposed representation): the values
of the histogram are less affected by rotations and scale changes of the target.

determines the level of detail. Finally, Fig. 2 (c) shows that
the proposed representation succeeds in preserving over time
the main structures of the model histogram.

IV. MULTI-FEATURE ADAPTIVE PARTICLE FILTER
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IN this section we present a general procedure for the
adaptive combination of multiple target representations in

a single particle filter framework. Furthermore, we propose a
strategy for the estimation of the feature contribution in the
resampling procedure. Finally, we compare different reliability
measures that estimate the relative importance of multiple
features.

A. Feature combination with particle filtering

Particle filtering [32] solves the tracking problem by esti-
mating the sequence of states xt, defined in Eq. (1), based
on previous and current observations z1:t (the image pixels
observed up to time t). In a Bayesian approach, the prob-
lem consists of calculating the conditional density p(xt|z1:t)
(posterior). The posterior probability p(xt|z1:t) of the target
state is approximated with a sum of Ns Dirac functions (the
particles) centered in

{
xi

t

}Ns

i=1
as

p(xt|z1:t) ≈
Ns∑
i=1

ωi
tδ

(
xt − xi

t

)
, (5)

where ωi
t are the weights associated with the particles that are

calculated as

ωi
t ∝ ω̂i

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
. (6)

Here q(.) is the proposal distribution used to sample the
particles, and p(xt|xt−1) is the state transition model, which
is used to propagate the particles toward new states, i.e.,
q(xi

t|xi
t−1, zt) ∝ p(xt|xt−1). To discard particles with lower

weights, a resampling step is applied before propagation. ω̂i
t−1

is the particle weight after the resampling step that draws the{
xi

t

}Ns

i=1
from the set

{
xi

t−1

}Ns

i=1
according to the resampling

function
{
ai

t−1

}Ns

i=1
[33]. The resampling function defines the

probability of each particle xi
t−1 to generate a new sample at

time t. This leads to ω̂i
t−1 = ωi

t−1/(Ns · ai
t−1). For arbitrary

resampling functions

ωi
t ∝

ωi
t−1

ai
t−1

p(zt|xi
t). (7)

Usually ai
t−1 = ωi

t−1 (i.e., ω̂i
t−1 = 1/Ns ∀i), hence

ωi
t ∝ p(zt|xi

t) (8)

that is, the weights are proportional to the likelihood of the
observation vector.

In the multi-feature case, the likelihood p(zt|x) should be
dependent on the distance from the model calculated for each
feature. Suppose that for each feature m (m = 1, . . . ,M ) we
can evaluate the likelihood pm(zt|xt). Hence

{pm(zt|xt)}M
m=1 (9)

is known for all t (in the specific implementation for this
paper M = 2). The overall likelihood is generated by linear
combination of the single features [19] as the likelihood
mixture

p(zt|x) =
M∑

m=1

αm,tpm(zt|xt), (10)

where αm,t is a mixture coefficient, and
M∑

m=1

αm,t = 1. (11)

In the case of object classification, the sum rule was demon-
strated to outperform the product rule and other classifier
combinations schemes by being less sensitive to ambiguous
and inconsistent measurements. We also argue that similarly
in object tracking the sum rule is less sensitive to clutter
and targets with similar appearance. Moreover, this strategy
is in line with the assumption that humans perceive visual
content through a sum of multiple features weighted by their
reliability [34].

We calculate the likelihood of each feature using the dis-
tance from the model histograms, defined in Eq. (2) as

pm(zt|x) = e−( d(fm(x),qm)
σ )2

. (12)

The histogram fm(x) defined by the state x is calculated
over the pixels of the observation vector (the image) zt. The
exponent is used to obtain a smooth likelihood thus facilitating
the final state estimation. The value of σ, which models
the noise on the measurements, is determined experimentally
based on the fact that the gradient orientation is more affected
by noise than color and that the finer the quantization, the
higher is the impact of the noise.

The best state at the time t is derived based on the discrete
approximation created by the weighted particles. The most
common solution is the Monte Carlo approximation of the
expectation E(xt|z1:t) calculated as the weighted average of
the particles xi

t.

B. Multi-feature resampling
When using the resampling function ai

t−1 = ωi
t−1 in

Eq. (7), for the multi-feature case, the particles are drawn
proportionally to the mixed likelihood weights of Eq. (10).
When the algorithm degenerates (i.e., all but one feature give
negligible contribution), most particles are resampled from a
single-feature ignoring the other components of the mixed
likelihood. As the evaluation of the reliability of each feature
requires a set of particles that accurately represents all the
components of the mixture as defined in Eq. (10), we introduce
a multi-feature resampling strategy. The resampling function
is defined as

ai
t =

M∑
m=1

βm,tpm(zt|xi
t) i = 1, ..., Ns, (13)

where

βm,t =
{

αm,t if αm,t > T
T otherwise m = 1, ...M, (14)

and T defines the lower bound for the number of particles
resampled from each feature. After thresholding, we normalize
the {βm,t}M

m=1 to one. We will refer to the multi-feature
particle filter with the proposed resampling procedure as MF-
PFR and to the multi-feature particle filter with standard
resampling (see Eq. (8)) as MF-PF. When the weights are
updated on line, we obtain the Adaptive Multi-Feature Particle
Filter (AMF-PF) that is described in Algorithm 1.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, MONTH 2007 6

Algorithm 1 Multi-Feature Adaptive Particle Filter[{
xi

t−1, ωi
t−1

}Ns

i=1
, {αm,t−1}M

m=1

]
→

[{
xi

t, ω
i
t

}Ns

i=1
, {αm,t}M

m=1

]
1: Compute

{
ai

t−1

}Ns

i=1
according to Eq. (13)

2: Resample the particles from
{
xi

t−1, a
i
t−1

}Ns

i=1
3: for i = 1 : Ns do
4: Draw xi

t from p(xt|xt−1)
5: Compute {pm(zt|xi

t)}M
m=1 according to Eq. (12)

6: end for
7: Compute {αm,t}M

m=1

8: for i = 1 : Ns do
9: Compute p(zt|xi

t) according to Eq. (10)
10: Assign the particle a weight ωi

t according to Eq. (7)
11: end for

C. Feature weighting

To compute the likelihood as in Eq. (10), we estimate the
mixture coefficients αm,t based on each feature reliability.

1) Existing reliability measures: The reliability of a feature
can be computed based on the average value of the saliency
over the whole frame [17] (Note that as the framework in [17]
is not probabilistic, the term saliency instead of likelihood
is used). Due to the discrete nature of the particle filter
approximation, we evaluate the saliency on the states defined
by the particles, and not on the whole frame. The measure
γ1

m,t (distance to average) for feature m is defined as

γ1
m,t = R ( pm(zt|x̂t) − 〈 pm(zt|xt) 〉 ) , (15)

where x̂t is the state determined by the particle with maximum
fused likelihood, defined as

x̂t = arg max
i

{
p(zt|xi)

}
, (16)

and 〈p(zm,t|xt)〉 is the average likelihood of feature m over
the set of particles. R(.) is the ramp function

R(x) =
{

x if x > 0
0 otherwise . (17)

An alternative solution, here referred to as γ2
m,t, substitutes x̂t

with the best particle selected separately by each feature:

x̂m,t = arg max
i

{
pm(zt|xi

t)
}

. (18)

Feature reliability can also be estimated based on the level
of agreement between each feature and the overall tracker
result [20]. The contribution of each feature is a function of the
Euclidean distance, Ēm,t, between the center of the best state
estimated by feature m and the center of the state obtained
combining the features using the reliability scores of time t−1.
The corresponding reliability score, γ3

m,t (centroid distance),
is computed by smoothing Ēm,t with a sigmoid function

γ3
m,t =

tanh(−aĒm,t + b) + 1
2

, (19)

where a, b are constants. a = 0.4 pixels−1 and b = 3 are the
values used in the original paper [20], and will be used for
the evaluation in Sec. V-C. Note that this measure does not
include any information about the error in the estimation of
the size and the rotation of the target.

2) Proposed reliability measure: We weight the influence
of each feature based on their spatial uncertainty [35]. We
propose to estimate the spatial uncertainty analyzing the
eigenvalues of the covariance matrix Cm,t of the particles xi

t

weighted by the likelihood, and computed for each feature m
at time t. Although the state space we use is 5-dimensional, for
illustrative purposes we now define Cm,t for a 2-dimensional
state, x = (u, v). Then the 2×2 normalized covariance matrix
is

Cm =


∑ Ns

i=1 lm(ui,vi)(ui−û)2∑ Ns
i=1 lm(ui,vi)

∑ Ns
i=1 lm(ui,vi)(ui−û)(vi−v̂)∑ Ns

i=1 lm(ui,vi)

∑ Ns
i=1 lm(ui,vi)(ui−û)(vi−v̂)∑ Ns

i=1 lm(ui,vi)

∑ Ns
i=1 lm(ui,vi)(vi−v̂)2∑ Ns

i=1 lm(ui,vi)

 .

(20)
For a more readable notation we have omitted t, and used
lm(xt) instead of pm(zt|xt). The extension to the 5-D case
is straightforward and a 5 × 5 covariance matrix is obtained.
We can now define the uncertainty Um,t as

Um,t = D

√√√√ D∏
k=0

λ
(k)
m,t = D

√
det(Cm,t), (21)

which is related to the volume of the hyper-ellipse having the
eigenvalues {λ(k)

m,t}D
k=1 as semi-axes. D is the dimensionality

of the state space. The determinant det(.) is used instead of
the sum of the eigenvalues to avoid problems related to state
dimensions with different ranges (i.e., position versus size or
orientation). The larger the hyper-volume, the larger is the
uncertainty of the corresponding feature about the state of the
target. The corresponding reliability score (spatial uncertainty)
is defined as

γ4
m,t = 1/Um,t. (22)

The importance of each feature is therefore the reciprocal of
its uncertainty. We compare two different versions of this
score. The first version, γ4

m,t, computes the average (û, v̂)
for Eq. (21) from the particle states weighted by the fused
likelihood using the reliability estimated at time t − 1. This
measures the likelihood spread compared with the tracker
result. The second version, γ5

m,t uses the weights of each
feature to compute the average (ûm, v̂m) which is substituted
for (û, v̂) in Eq. (20), thus measuring the internal spread of
each likelihood (Eq. (9) ). Figure 3 shows a typical situation
where measuring the spatial uncertainty of a feature helps
the tracker. While tracking the face the color histograms
information is ambiguous, as the box on the bottom-left has
a similar color to the skin. On the other hand, orientation
information is more discriminative (less spatially spread) on
the real target. Moreover, the reliability estimation based on
particle filter sampling allows us to assign different reliability
scores to different targets in the scene. When the targets are far
in state space, Eq. (21) determines the discriminative power
of a feature in separating the target from the background.
When the targets are close, the two sets of hypotheses will
overlap. Hence, due to the multi-modality of the likelihoods,
the uncertainty defined by Eq. (21) will increase.
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(a) (b) (c)
Fig. 3. Comparison between the model-candidate likelihood of color and
orientation histograms in a face tracking scenario. The target model is
computed on the corresponding frame of Fig. 5. (a) Frame under analysis.
(b) Spatial spread of the color likelihood. (c) Spatial spread of the orientation
likelihood. A reliability score measuring the spatial spread could improve the
tracker performance by assigning to the orientation a larger weight than that
of the color.

To smooth temporal variations, the reliability scores, γj
m,t,

undergo temporal filtering using the leaky integrator

αj
m,t = ταj

m,t−1 + (1 − τ)γj
m,t, (23)

where τ ∈ [0, 1] is the forgetting factor. The lower τ , the faster
is the update of αj

m,t. To satisfy Eq. (11), it is sufficient to
enforce the condition

∑M
m=1 γj

m,t = 1.
Figure 4 compares the time evolution of the reliability scores

while a head undergoes a 360o out-of-plane rotation. When the
head starts rotating, the contribution of the gradient should
increase as the color distribution changes significantly. When
the target is again in a frontal pose, the gradient contribution
should decrease and approach its initial value. The score α1

has a high variability, caused by the ramp function of Eq. (17).
The likelihood evaluated in the best combined state is often
lower than the average likelihood, thus resulting in γ1

m = 0
and a rapid variation of α1. Unlike α1, α2 is not influenced
by the ramp, since the likelihood is measured on the best
particle of each feature separately. α2 correctly increases the
importance of the orientation histogram during the rotation.
However, other variations are generated when no adaptation
is expected. Similar considerations can be drawn for α3: the
high variability is not always motivated by real appearance
changes. Before the head rotation, the two scores α4 and α5

behave similarly. However, only α4 has an adaptation profile
compatible with the head rotation. Section V-C will provide
quantitative results to support these observations.

V. EXPERIMENTAL VALIDATION

A. Test conditions

WE demonstrate the proposed tracker on a dataset com-
posed of 12 heterogeneous targets extracted from 9

different tracking sequences (Tab. II). Four head targets (H1,
H2, H3, and H4) are from a public dataset1 and other two (H5,
and H6) are part of an in-house dataset2. Four pedestrians (P1,
P2, P3, and P4) are extracted from the PETS 2001 dataset; P5
is from the CAVIAR dataset3. Finally the target O1 is extracted
from a sequence generated using an omni-directional camera.
Figure 5 shows sample frames highlighting the targets.

1http://www.ces.clemson.edu/˜stb/research/headtracker/seq
2The sequences and the ground truth are available at http://www.elec.

qmul.ac.uk/staffinfo/andrea/multi-feature.html
3EC Funded CAVIAR project/IST 2001 37540, the dataset is available at

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 4. Comparison of orientation histogram weights for the adaptive feature
combination (α1, α2: distance to average; α3: centroid distance; α4, α5:
spatial uncertainty). The tracker is initialized as showed in the top-left image
of Fig. 5.

The parameters of the tracker were set experimentally, and
are the same for all the targets (the only exception is the
standard deviation for H5, as described below). The color
histograms are calculated in the RGB space with Nc,b =
8× 8× 8 bins, while the orientation histograms are calculated
using No,b = 32 bins. As all the head targets perform
unpredictable abrupt shifts, the particle filter uses a zero-order
motion model xt = xt−1 + nt, where nt is a multivariate
Gaussian random variable with σh,t = 0.05·ht−1, σe = 0.021,
and σθ = 5o. σx = σy = 5 for all the targets except for H5
where σx = σy = 14. The values of σ in Eq. (12) are set to
σc = 0.09 for the color, σo = 0.13 for the orientation. The
particle filter uses 150 samples per frame. The time filtering
parameter τ for adaptive tracking is τ = 0.75, and a minimum
of 45 particles is drawn from distribution of each single feature
(i.e., T = 0.3).
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TABLE II
DESCRIPTION OF THE TRACKING DATASET.

Targets Frame size Frame rate Characteristics

H1, H2, H3, H4 128 × 96 30fps Scale changes,
clutter, occlusions

H5 PAL 25fps Clutter, self-occlusions

H6 320 × 240 12.5fps Abrupt shifts, clutter,
partial occlusions

P1, P2, P3, P4 PAL 25fps Clutter, occlusions
P5 384 × 288 25fps Clutter

O1 352 × 288 25fps Omni-directional
camera, occlusions

Fig. 5. The targets of the evaluation dataset. (From top-left to bottom-right)
Head targets: seq mb (H1), seq sb (H2), seq jd (H3), seq villains2 (H4), Toni
(H5), Emilio (H6); pedestrians: (P1), (P2), (P3), (P4), and (P5); a toy bunny
(O1).

B. Performance evaluation

To compare different trackers, we estimate the error of their
results. The error measure quantifies the discrepancy between
the target estimations and the manually generated ground-truth
targets3. The ground-truth consists of the set of 5 parameters
of the ellipse (centroid coordinates, size, eccentricity and
rotation) best fitting the target at each frame. Let tp(t) be the
number of true positive pixels (i.e., pixels belonging to both
the ground-truth target and the estimated target) in each frame
t. Let |.| denote the cardinality of a set. If |Ag(t)| and |Ae(t)|
are the ground-truth and the estimated target area respectively,
then the error of the estimation P(t) at time t can be defined
as

P(t) = 1 − 2tp(t)
|Ae(t)| + |Ag(t)|

. (24)

This performance measure rewards candidates with a high
percentage of true positive pixels, and with few false positives
and false negatives avoiding the asymmetry problem of other
area based measures [36]. Furthermore, unlike centroid based
measures, P(.) accounts also for errors in the estimation of
size, and eccentricity, and in case of lost detection is not
dependent on the position where the tracker is stuck (i.e.,
P(.) saturates to 1). The quality measure of a whole track is
obtained by averaging P(t) over the frames where the target
is visible. Since particle filter is a probabilistic algorithm, each
tracker is run 20 times for each sequence of the dataset. The
seed of the function generating the random Gaussian variable
n for state transition model is initialized using the processor
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Fig. 6. Tracking results for different feature weighting strategies. The bars
represent the average error, the boxes represent the standard deviation of the
error, and the error bars represent the maximal and minimal error on each
sequence.

clock. For each target in a sequence we calculate the average,
minimum and maximal error and its standard deviation over
the runs: a good tracker is characterized not only by a small
average error, but also by small variations in the error in
different runs.

C. Comparison of feature weighting strategies

Experimental results comparing the feature weights
(Sec. IV-C) are shown in Fig. 6. The five scores achieve
comparable performances on H5, H6 and P4, and present large
error differences in sequences with occlusions and clutter (H3,
H4, P1, P2, and P3). In particular α1 and α3 leads to poor
results compared to α2, α4 and α5 in H3, H4, P1, P2, and P3.
This confirms that the two scores with faster variability are less
accurate, especially in sequences with false targets and clutter.
In fact, the more conservative score α2 results in a more stable
performance on the same targets. The score α4 consistently
yields to the lowest error and lowest standard deviation across
different target typologies and tracking issues. In particular a
large performance gap is achieved on H1, P2, and P3. This
confirms the comments related to Fig. 4. The score α5 is more
accurate than α1, α2 and α3, but performs worse than α4.
For this reason α4 will be used as feature reliability score in
Adaptive Multi-Feature Particle Filter (AMF-PFR) adopting
the resampling procedure described in Sec. IV-B.
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Fig. 7. Comparison of tracking results for the proposed algorithm (AMF-PFR), different fixed combinations of the features with (MF-PFR) and without
(MF-PF) multi-feature resampling, and the head tracker proposed in [7]. The average distance from the ground truth (lines), the standard deviation (boxes)
and the maximal and minimal errors (error bars) are plotted against the weight given to the color feature. For readability purpose the error bars and standard
deviations of the non-adaptive algorithms are displayed only for MF-PF (comparable results are obtained with MF-PFR).

D. Tracker comparison

We first compare the proposed algorithm (AMF-PFR)
against two trackers with various fixed weight combinations,
namely MF-PFR (tracker with multi-feature re-sampling) and
MF-PF (tracker without multi-feature re-sampling). Next, we
compare AMF-PFR with the popular tracker proposed by
Birchfield [7]. From now on we will refer to this tracker with
its bibliography reference number, [7].

Figure 7 shows the performance comparison between the
adaptive and the non-adaptive trackers. The results related to
MF-PFR and MF-PF are obtained by fixing a priori the color
importance αc. Note the large performance improvements
when moving from single feature (i.e., MF-PF with αc = 0
and αc = 1) to multi-feature algorithms. It is worthy noticing
that the optimal working point, α̂c, of the non-adaptive trackers
(MF-PF, MF-PFR) varies from target to target. For example
α̂c = 0.3 in H1, while α̂c = 0.6 in H3. In these two cases
MF-PF and MF-PFR require manual tuning to achieve optimal
performance, whereas in AMF-PFR the adaptation is auto-

mated. Furthermore the error of AMF-PFR is comparable with
or lower than the best result of the non-adaptive algorithms
(MF-PF and MF-PFR).

On H1 and H5 the error of AMF-PFR is 17% and 5%
respectively lower than the error at the best working point
of MF-PFR. Figure 9 shows sample frames on H1 from the
run with the closest error to the average: MF-PF (first row)
and AMF-PFR (second row). As the target changes scale (the
first four columns of Fig. 9 show a 1/4 of octave scale change)
the scale of the filter is adapted. The numbers superimposed
on the images are the minimum and maximum of the standard
deviation of the Gaussian derivative filters that are used to gen-
erate the scale space (Sec. III-B). When the head turns (second
to fourth column) or a severe occlusion happens (second last
column) the adaptive weighting reduces the tracking error. On
H6, although AMF-PFR is more accurate than most of the
fixed combinations of weights, its result is 5% worse than
the best non-adaptive (manually set) result. In this sequence
scale changes, illumination changes and a partial occlusion
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Fig. 9. Sample results from the average run on target H1 (frames 82, 92, 100, 109, 419, 429, 435, and 442). First row: non-adaptive multi-feature tracker
(MF-PF). Second row: adaptive multi-feature tracker (AMF-PFR). When the target appearance changes AMF-PFR achieves reduced tracking error by varying
the importance of the features over time.

Fig. 8. Sample results from the worst run on target H4 (frames 116, 118, 126,
and 136). First row: non-adaptive multi-feature tracking (MF-PF). The color
contribution is fixed to 0.5, i.e. the value that gives the best average result
on MF-PF. Second row: adaptive multi-feature tracker (AMF-PFR). Note that
MF-PF is attracted by a false target, while the proposed method (worst run)
is still on target.

occur; both color and orientation models are unable to describe
correctly the target, and this results in a sub-optimal adaptation
of α. In this case, a larger pool of features could help to
improve the effectiveness of the adaptation.

The results on P1, P2, P3, P4, and P5 (Fig. 7) show how the
algorithm adapts when one feature is more informative. The
edge distribution of a pedestrian has fast time variability; hence
the orientation histogram does not contribute significantly to
improve the tracker performance. By allowing time adaptation
AMF-PFR manages to achieve a result that is similar to the
best fixed combination of the features. Figure 10 (first row)
shows sample results on P4. AMF-PFR successfully tracks the
target despite the presence of clutter with similar colors (the
white car), and despite the occlusion generated by the lamp
post. Similarly for O1 (Fig. 10, second row): the occlusion
generated by the hand is overcome thanks to the multiple
hypothesis generated by PF and to the flexibility of the target
representation.

Finally, the standard deviations and error bars of Fig. 7
show that the error is more stable for AMF-PFR than for the
non-adaptive counterpart MF-PF. This is more evident in H1,
H4, and P3, where a small variation of the weights results
in MF-PF loosing the track. For example, Fig. 8 shows the
results of the worst run in terms of error on target H4: MF-PF
(first row) is attracted by false targets, and the track is lost
during the rotation of the head. Although AMF-PFR (second
row) does not accurately estimate the target size the object is
continuously tracked.

Figure 7 shows also that AMF-PFR outperforms [7] on all
the 6 head targets. Figure 11 shows how the cluttered edge

Fig. 10. Sample results of adaptive multi-feature tracker (AMF-PFR). First
row: target P4 (frames 38, 181, 273, and 394). Second row: target O1 (frames
332, 368, 393, and 402).

Fig. 11. Sample tracking results on target H5 (frames 200, 204, 218, and
247). First row: elliptic head tracker ( [7]). Second row: adaptive multi-feature
tracker (AMF-PFR). Unlike [7], the gradient information used in the AMF-
PFR target model manages to separate the target from the clutter.

responses generated by the bookshelf highly affect the perfor-
mance of [7]. We believe that the performance improvement is
due to representation of the gradient based on the orientation
histograms. While [7] encodes only the information of the
edges on the border of the object, the orientation histograms
used in AMF-PFR represent also the distribution of the internal
structures that are less likely affected by clutter.

On a Pentium 4 3GHz, a non-optimized implementation
of AMF-PFR runs at 13.2fps on H1 (average area: 1540
pixels), 7.4fps on P4 (2794 pixels), and 2.2fps on H5 (10361
pixels). The computational complexity approximately grows
linearly with the target area. It is also worth noticing that
the complexity does not depend on the frame size, as the
processing is done on a region of interest around the target.
AMF-PFR spends 60.3% of the time computing the orientation
histograms, 31.1% on the color histogram, 7.9% on the recur-
sive propagation of the particles, and only 0.7% computing the
feature reliability scores. The computational cost associated
to the orientation histogram could be reduced by using an
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optimized implementation of the Gaussian scale-space [28].

VI. CONCLUSIONS AND FUTURE WORK

WE presented a multi-feature tracking algorithm that
adaptively weights the contribution of each feature

based on their reliability. A novel reliability score based on the
weighted covariance matrix was proposed in a particle filter
framework. The extension of this approach to particle filtering
was not straightforward and is part of our contribution. The
proposed adaptive particle filter algorithm improves the flexi-
bility of the representation by exploiting the complementarities
of the failure modes of the various descriptors in a simple and
efficient way.

Experimental results over a set of real-world heterogeneous
targets showed that the adaptive multi-feature representation
formed by a combination of color and orientation histograms
is more descriptive and leads to more accurate results than
a single-feature representation, and outperforms or matches
the optimal manually selected combination of the features.
The proposed feature reliability score is general and can be
extended to a larger set of features.

Future work includes the investigation of fusion mecha-
nisms that account for inter-dependencies between features.
Moreover, selection algorithms could be employed to dynami-
cally disable redundant features to improve the computational
efficiency of the algorithm. Also, we aim to investigate an
integrated probabilistic treatment of the interaction between
feature reliability estimation and particle filter sampling. Fi-
nally, we are studying a robust model update criterion driven
by the estimates of the feature reliability in order to achieve
longer-term tracking under varying conditions.
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