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Auditory spectrum-based pitched instrument onset
detection

Emmanouil Benetos,Student Member, IEEE and Yannis Stylianou,Member, IEEE

Abstract—In this paper, a method for onset detection of music
signals using auditory spectra is proposed. The auditory spectro-
gram provides a time-frequency representation that employs a
sound processing model resembling the human auditory system.
Recent work on onset detection employs DFT-based features
describing spectral energy and phase differences, as well as pitch-
based features. These features are often combined for maximizing
detection performance. Here, the spectral flux and phase slope
features are derived in the auditory framework and a novel
fundamental frequency estimation algorithm based on auditory
spectra is introduced. An onset detection algorithm is proposed,
which processes and combines the aforementioned features at the
decision level. Experiments are conducted on a dataset covering
11 pitched instrument types, consisting of 1829 onsets in total.
Results indicate that auditory representations outperform various
state-of-the-art approaches, with the onset detection algorithm
reaching an F-measure of 82.6%.

Index Terms—Onset detection, group delay function, auditory
spectrum.

I. I NTRODUCTION

T HE detection of the starting time of each musical note
plays an important role in the analysis of music sig-

nals. This process is referred to as musical instrument onset
detection and it is an essential step for music transcription
applications, as well as for music signal compression, beat
tracking, audio editing applications, and music information
retrieval. The goal of an onset detection system is the accurate
estimation of note onset times, regardless of the instrument
type or performance style.

Musical instruments can be roughly categorized into three
families: non-pitched percussive, pitched percussive, and
pitched non-percussive [1]. For the first category, the creation
of an onset detection system is a relatively simple task, since
percussive onsets are characterized by sudden energy changes.
However, the detection of onsets of pitched instruments is a
nontrivial task, since the way the onsets are produced is largely
dependent on the instrument type. For a percussive instrument
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like the piano, onsets are located by amplitude changes in the
spectrum. However, for a string instrument like the cello, the
onset can be produced using a constant excitation, without
any noticeable energy change. Several approaches for pitched
instrument onset detection have been proposed in the literature
[2], however they are mostly limited to a small number of
instrument classes. In addition, most results presented inthe
literature concern individual instrument families, presenting
overly optimistic performance rates. Most techniques relyon
DFT-based features, neglecting psychoacoustic models that
are able to mimic the human auditory system. It should be
noted that there exists a difference between the actual onsets
produced by instruments and perceptual onsets, caused by
a noticeable change in intensity, pitch and timbre of the
sound [3]. In [4], it was observed that onsets perceived by
human annotators appeared late compared to automatic onset
detection systems.

Most onset detection techniques focus on the creation of
an onset detection function (also called onset strength signal
or novelty function), whose peaks denote the presence of
an onset. Onset detection functions are derived by detecting
changes in certain audio signal features, and they usually have
lower sampling rate compared to the original signal. Onsets
are finally derived by employing a peak picking procedure on
the onset detection function. Most onset detection approaches
utilize features detecting changes in the energy or phase
domain. Energy changes are most useful in detecting hard
onsets, usually produced by percussive instruments, while
phase-based changes are able to detect soft onsets, which
denote the beginning of an excitation but may not indicate
a change in signal energy [2], [5]. All proposed techniques in
the literature employ processing in different frequency bands
for the aforementioned features, which improves considerably
onset detection accuracy. An example of an onset detection
system using subband processing is the one proposed by
Duxbury et al. [6], which uses subband decomposition and
employs different descriptors for each frequency regions.
Specifically for pitched instrument sounds, pitch detection
techniques are also employed, which are able to detect onsets
which are produced in the presence of constant excitation [5],
thus not being detectable in the energy or phase domain. The
major drawback of pitch-based onset detection techniques is
that a change in pitch corresponds to the beginning of a stable
time segment and not the actual onset time [7].

Onset detection systems related to this work will be ad-
dressed in detail. In [1], an onset detection system com-
bining both energy and phase information was proposed.
The generated detection function combines spectral flux and
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phase slope features in the complex domain. The employed
dataset contained pitched nonpercussive, pitched percussive,
nonpitched percussive, and complex sounds, comprising 1060
onsets in total. Reported results indicated an improvementover
energy and phase-based approaches. An improved version of
the system in [1] was proposed in [8], tested on the same
dataset. The dataset used for evaluation in [8] was the same
as in [1], with the inclusion of a separate dataset consisting
of 106054 piano onsets derived from Mozart piano sonatas.

In [9], the negative derivative of the unwrapped phase over
frequency, also called group delay function, was proposed
for onset detection in a beat tracking application. The group
delay function denotes the distance between the center of
an analysis window and the position of an impulse created
by a minimum phase signal. Since musical instruments can
be considered as causal and stable filters, the usage of the
group delay function was justified. Thus, onsets were detected
by estimating the positions of positive zero-crossings of the
group delay function. Multiband analysis was performed on
two datasets, the first from the MIREX 2006 beat tracking
task and the second containing samples of traditional Cretan
music. In [5] the group delay function, the spectral difference
and the fundamental frequency change features were combined
at decision level for an onset detection system. A dataset
containing samples from 11 different pitched instruments was
developed, which is also used in the present experiments.
The fundamental frequency was extracted using the YIN
algorithm [10] and the aforementioned features were combined
at decision level. Results indicated an F-measure of 82.1% for
the fused onset detection function, which was an improvement
of about 11% for each single descriptor.

In [4], a system for onset detection employing a constant-
Q pitch detector was proposed, tested on the pitched non-
percussive sounds also employed in [1]. The pitch detectional-
gorithm employs a maximum likelihood approach, attempting
to correlate a harmonic template with the constant-Q spectrum
in order to find the best fitting fundamental frequency. An
algorithm for vibrato suppression is also introduced, while
results indicate an improvement over phase-based and energy-
based approaches. The actual onset times were derived by
the stable segment times by simply subtracting about 140ms
from the detected time instant. It is also suggested in [4] that
a detector based on a computational auditory model might
improve onset detection performance. Another onset detection
system employing pitch estimation was introduced in [7],
which utilizes an energy descriptor for detecting hard onsets
and a pitch descriptor for detecting soft onsets. Instead ofthe
DFT, the resonator time-frequency image was used for feature
extraction [11]. For the detection of the onset times from the
stable segments derived by pitch, a window of length 300ms
looking backward from the beginning from the stable segment
was used, searching for increase in energy at the frequency bin
corresponding to the detected pitch. The MIREX 2007 onset
detection dataset was employed and the method proposed in
[7] outperformed all competing approaches.

As far as systems employing psychoacoustically motivated
models are concerned, a filterbank system was introduced in
[12], which uses the loudness of each band as a descriptor.

In [13], the perceptual spectral flux was introduced as a
feature for onset detection, which employs a weighted STFT,
weighting frequency bands according to the human loudness
contour. In [14], a comparison between the approach in [1]
and the psychoacoustically motivated approaches in [12], [13]
was performed. Finally, Gainza et al. [15] employed FIR comb
filters on a frame by frame basis combining the inharmonicity
properties with the energy increases of the signal onset.

The auditory spectra, based on the model presented in [16],
are designed to mimic the functions of the human auditory
system. In this paper, an approach for onset detection is pro-
posed by employing auditory spectra instead of DFT-derived
spectra for the computation of onset detection features. More
specifically, the group delay function and the spectral flux are
derived in the auditory framework. In addition, an auditory
spectrum-derived fundamental frequency estimator based on
the harmonic product spectrum technique is developed. Then,
an onset detection system is finally suggested, combining the
aforementioned three descriptors at decision level. Compar-
ative experiments on onset detection were performed using
the complex domain phase and energy descriptor used in
[2]. The employed dataset for experimentation was introduced
in [5] and contains a wide variety of pitched instrument
types, not limited to western instruments, containing 1829
onsets in total. Results indicate that the isolated auditory
descriptors reach high precision values for onset detection,
outperforming the respective DFT-based features. Finally, the
combined onset strength signal of the three auditory spectrum-
derived descriptors performs slightly better compared to state-
of-the-art approaches for onset detection employing DFT-
based techniques, reaching an F-measure of 82.6%.

The outline of the paper is as follows. The employed
auditory model is presented in Section II. In Section III,
the spectral flux and group delay function are derived for
the auditory spectrum, a fundamental frequency estimation
algorithm using the auditory model is presented and the
proposed onset detection system is discussed. The employed
dataset, the methods used for evaluation and the experimental
results are discussed in Section IV. Conclusions are drawn and
future directions are indicated in Section V.

II. A UDITORY MODEL

The auditory model was first introduced in [17] and formal-
ized in [16]. It is inspired by physiological, psychoacoustical
and computational studies in the human primary auditory
cortex. The model consists of two stages, a spectral estimation
model (designed to mimic the cochlea in the auditory system)
and a spectral analysis model (which mimics the primary
auditory cortex). The spectral estimation model produces the
so-called auditory spectrogram.

The auditory spectrum produces a time-frequency repre-
sentation of the signal on a logarithmically scaled frequency
axis, referred as the tonotopic axis. The auditory spectrogram
consists of 128 log-frequency bins and can be approximated
as:

XA[n, l] = max(∂lg(∂nx[n] ∗n h[n, l]), 0), (1)
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wherex[n] is the original signal andh[n, l] is a minimum-
phase seed bandpass filter whereh[n, l] = αh[αn, l0], with
scaling factorα = 2l−l0 and l = 1, . . . , 129. The Fourier
transform of h[n, l] for a given l satisfies the following
property: ∂H(ω)

∂ω
= jωH(ω). The convolution ofx[n] with

h[n, l] is an application of a constant-Q filter-bank wavelet
transform. In (1),∂i denotes the partial derivative overi, and
g(m) = 1

1+e−m − 1
2 is a sigmoid-like function, which is used to

model the hair cell response in the human auditory system. It
should be noted that in (1) two operations are not mentioned
for purposes of simplicity. The first consists of a temporal
smoothing operation which filters out responses beyond 4 kHz
and the second consists of a temporal integration ofXA[n, l],
which is followed by subsampling. In general, the auditory
spectrogram is relatively insensitive to broadband changes in
the spectral shape and it is more robust against noise compared
to the DFT-derived spectrogram [16].

III. A UDITORY SPECTRUM-BASED ONSET DETECTION

In this section, the system developed for onset detection
using auditory spectra will be presented. First, the phase slope
and spectral flux features will be derived for the auditory
framework. Then, an algorithm for fundamental frequency
estimation using auditory spectra will be suggested. Finally,
the fusion of the aforementioned descriptors will be discussed.

A. Auditory Group Delay

In [5], [9] the group delay function was computed in the
DFT domain as:

GRD[ω, k] =
XR[ω, k]YR[ω, k] +XI [ω, k]YI [ω, k]

|X [ω, k]|2 (2)

whereX [ω, k] andY [ω, k] are the DFTs ofx[n] andnx[n],
respectively and the subscriptsR and I denote the real and
imaginary parts of the DFTs. The auditory spectrum however
does not contain any imaginary parts, thus phase information
will be extracted using the analytic signal representationof
the auditory spectrum [18]. In our analysis, the phase slope
(also called instantaneous frequency) in the auditory spectrum
is computed in a way similar to [19]. For simplicity purposes,
n will refer to the continuous domain. The following approx-
imation for the auditory spectrum will be used:

XA[n, k] ≈ x[n] ∗n h[n, l] (3)

taking into account the constant-Q wavelet transform, which is
the most important part in the auditory spectrum formulation.
The analytic signal representation ofXA[n, l] is defined as:

XA[n, l] = XA[n, l] + jX̂A[n, l], (4)

where X̂A[n, l] is the Hilbert transform ofXA[n, l] over n
[20]. The analytic signal can also be expressed in polar form
as:

XA[n, l] = µ[n, l]ejφ[n,l], (5)

where µ[n, k] is the magnitude ofXA[n, l] and φ[n, l] its
respective phase. Following (5),φ[n, l] can be expressed as:

φ[n, l] = ℑ(ln(XA[n, l])) (6)
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Fig. 1. A sequence of impulses with linearly time varying amplitudes, the
associated DFT-based group delay function (dashed line), and the associated
auditory spectrum-based group delay function (dashed-dotted line).

Thus, the negative derivative of the phase overn of the analytic
signal is expressed in the form:

τ [n, l] = −∂φ[n, l]

∂n
= −ℑ

(

1

XA[n, l]
· ∂XA[n, l]

∂n

)

(7)

In the following analysis, the Fourier transforms of the
auditory spectra will be utilized for convenience. Thus:

F{XA[n, l]} = X(ω)H(ω, l) (8)

F
{

∂XA[n, l]

∂n

}

= jωX(ω)H(ω, l) (9)

F
{

∂X̂A[n, l]

∂n

}

= sgn(ω)ωX(ω)H(ω, l) (10)

where X(ω) and H(ω, l) denote the Fourier transform of
x[n] andh[n, l], respectively. We proposeYA[n, l] = x[n] ∗n
nh[n, l]. By employing the definition ofh[n, l] in Section II,
YA[n, l] can be formed in the Fourier domain as:

F{YA[n, l]} = −ωX(ω)H(ω, l) (11)

F{ŶA[n, l]} = jsgn(ω)ωX(ω)H(ω, l) (12)

Using (9) and (12), it can be seen that:

F{ŶA[n, l]} = sgn(ω)F
{

∂XA[n, l]

∂n

}

⇒

ŶA[n, l] =
1

2

(

δ[n] +
j

πn

)

∗n
∂XA[n, l]

∂n

=
1

2

∂XA[n, l]

∂n
+

1

2
j
∂X̂A[n, l]

∂n
(13)

Likewise, using (10) and (11):

F{YA[n, l]} = −sgn(ω)F
{

∂X̂A[n, l]

∂n

}

⇒

YA[n, l] = −1

2

(

δ[n]) +
j

πn

)

∗n
∂X̂A[n, l]

∂n

= −1

2

∂X̂A[n, l]

∂n
+

1

2
j
∂XA[n, l]

∂n
(14)
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Combining (13) and (14):

YA[n, l] = YA[n, l] + jŶA[n, l]

= −∂X̂A[n, l]

∂n
+ j

∂XA[n, k]

∂n

= j
∂XA[n, k]

∂n
(15)

Substituting (15) into (7):

τ [n, l] = ℜ
(YA[n, l]

XA[n, l]

)

=
YA[n, l]

XA[n, l]
(16)

It can be seen that the definition ofτ [n, l] in (16) closely
resembles the definition of the DFT-based group delay, by
removing the imaginary parts of (2). In addition, it can be
seen that no average value has been computed for neighboring
bands as is the case for the DFT-based phase slope. Thus, the
usage of the termauditory group delay instead of auditory
phase slope is justified. In Fig. 1, an example of a DFT-based
phase slope function is depicted by the dashed line which
has positive zero crossings at the position of impulses in the
signal, along with the auditory spectrum-based group delay
function, depicted as a dashed-dotted line, which is obtained
when shifting an analysis window over a sample signal. It can
clearly be seen that the auditory group delay exhibits peaksat
the position of impulses in the signal.

The processing steps for the computation of the onset
detection signal based on the auditory group delay function,
can be seen in Fig. 2. The auditory spectrum is computed using
the NSL toolbox [21]. For the computation of the auditory
spectrum the window length is set to 0.1s, with 4.5ms hop size
and the resulted spectrogram is computed for a bandwidth of
76-3242 Hz. In processing block 2, the auditory group delay
function is computed from auditory spectrogramsXA[n, l]
and YA[n, l] using (16). For our analysis, tonotopic bands
b = 1, . . . , 120 of the auditory spectrogram were utilized, thus
ignoring bands containing high-frequency noise. In processing
block 3, the group delay deviation overn is calculated for each
band, by using two frames as a hop size, as in [1], [2]:

∆GRD[n, l] = ∆τ [n, l] + ∆τ [n− 1, l] = τ [n, l] − τ [n− 2, l]
(17)

where ∆τ [n, l] = τ [n, l] − τ [n − 1, l]. In processing block
4 of Fig. 2, each band is smoothed in time using a 3rd
degree Savitzky-Golay filter with window size equal to 12
samples [22]. The Savitzky-Golay filter uses local polynomial
regression and is considered superior compared to FIR filters
or moving average filters, preserving the local maxima of
the signal while rejecting noise. In processing block 5, for
each band of∆GRD[n, l], peak picking is performed in
order to select candidate onsets. For each band, an onset
detection signal is constructed containing either the value zero
when no peak has been detected, or the amplitude of the
detected peak. In each bandb, a threshold for peak detection
is determined separately by the mean value of the half-wave
rectified auditory group delay function for the particular band.
Finally, all band-wise detection signals are summed, creating a
single onset detection signal based on the auditory group delay.
In Fig. 3, the band-wise mean of the smoothed∆GRD for
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Fig. 3. The band-wise mean∆GRD of a tanbur recording. The dotted
arrows correspond to the ground truth, while the ‘x’ marker correponds to
onsets detected by peak picking on the detection signal.

a tanbur (plucked string instrument) recording is depicted. By
peak picking on the detection signal, seven onsets are detected
while two missed detections occur.

Onsets are detected from the auditory group delay onset
strength signal by a selection of local maxima. First, the
auditory group delay detection function is normalized using
z-score standardization. Afterwards, a moving median filter of
length 0.2s is computed as an adaptive threshold, which is a
robust method for detecting impulses in audio signals [23].
The adaptive threshold is then subtracted from the detection
signals. Finally, peak picking is performed, by selecting peaks
that are higher than thresholdδ and are separated by a
minimum peak distance of 40ms.

B. Auditory Spectral Flux

The spectral flux in the Fourier domain measures the
magnitude changes in each frequency bin [8] which indicate
attack parts of new notes [5]. The spectral flux can be used
effectively for onset detection of percussive signals, butits
performance decreases when soft onsets are located [1]. In
[5], the spectral flux was computed using the L1 norm:

SF [k] =
∑

ω

HW (|X [ω, k]| − |X [ω, k − 1]|) (18)

whereX [n, k] is the DFT of the original signal at thek-th
frequency bin andn-th frame andHW (x) = x+|x|

2 is the
half-wave rectifier function. The descriptor combining phase
and spectral flux proposed in [1], [8] which will be used for
performance comparison results in Section IV is formulated
as follows:

CD[n] =

N

2
−1

∑

k=−N

2

|X [n, k] − |X [n− 1, k]|eψ[n−1,k]+ψ′[n−1,k]|

(19)
whereψ[n, k] is the phase ofX [n, k].

The spectral flux in the auditory domain is defined in a
similar manner to the DFT-based spectral flux in (18), using
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Fig. 2. Block diagram of the computation of the auditory spectrum-based group delay.
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Fig. 4. The auditory spectral flux of a trumpet recording. Thedotted arrows
correspond to the ground truth, while the ‘x’ marker correponds to onsets
detected by peak picking on the auditory spectral flux.

the L1 norm:

AUD SF [n] =
∑

l

HW (XA[n, l]−XA[n− 1, l]). (20)

It should be noted that the L1 norm is favored over the L2
norm for spectral flux computation [8]. For the creation of an
onset strength signal derived from the auditory spectral flux,
the original signal is resampled to 8kHz and the spectral flux
is computed with a step size of 8ms, without overlapping. It
should be noted that no band-wise smoothing or band selection
was performed on the auditory spectral flux, since it was found
to degrade onset detection performance. This was the case in
soft onsets produced by string instruments, where the envelope
of the spectral flux detection function was much smoother
compared to the envelope of the detection function produced
by hard onsets. Onsets from the auditory spectral flux are
detected in a similar way to the auditory group delay onset
strength signal: z-score normalization is performed, a moving
median filter of 0.2s is employed as an adaptive threshold, and
finally peak picking is performed using the thresholdδ. In Fig.
4, the auditory spectral flux of a trumpet recording is depicted.
As can be seen, onsets derived from the auditory spectral flux
occur within a short delay compared to the actual annotation.
This is due to the fact that the spectral flux detects the largest
energy increase in the attack part of the note and not the actual
onset time.

C. Fundamental Frequency Estimation

While hard onsets can be easily detected using algorithms
measuring energy differences over time, soft onsets which are

produced by pitched non-percussive instruments are harderto
detect using the aforementioned methods, due to the fact that
the sounds are produced with a constant excitation [5], [7].
Thus, the only detectable change of a soft onset is in the
pitch domain. A brief overview for pitch detection techniques
for music processing can be found in [24]. As far as onset
detection experiments using pitch estimation are concerned,
Collins [4] employed a constant-Q pitch detector, choosing
a best matching harmonic template, which is a variant of
the maximum likelihood (ML) approach [25]. Zhou et al.
proposed a pitch detection algorithm based on the resonator
time-frequency image [7]. Finally, Holzapfel et al. [5] utilized
the YIN fundamental frequency estimator [10], which is a
modified version of the autocorrelation method for pitch
estimation.

For our experiments, we propose a fundamental frequency
estimation algorithm which is based on auditory spectra.
The algorithm is inspired by the harmonic product spectrum
(HPS) algorithm, which was proposed by Noll [25]. The
HPS algorithm is based on multiplying spectral frames which
are subsampled by different integer values as to align the
harmonics. The resulting product of the subsampled spectral
frames is searched for a maximum value which denotes
the fundamental frequency for the current frame. The HPS
algorithm is relatively inexpensive due to FFT computation
and resistant to noise, compared with ML approaches. A
drawback of the HPS algorithm is the presence of octave errors
in fundamental frequency measurements, which however can
be corrected by post-processing operations [24].

Since the auditory spectrum produces 24 coefficients per
octave (1 bin corresponds to 50 cent units), the first step for
the proposed algorithm is the creation of a semitone-resolution
auditory spectrogram:

PA[n,m] = XA[n, 2m− 1] +XA[n, 2m] (21)

where m = 1, . . . , 64. Since the auditory spectrogram is
defined on a logarithmic scale, the proposed auditory pitch
spectrogram is defined as a product of translated auditory
spectral frames:

QA[n,m] = PA[n,m] · PA[n,m− 12] · PA[n,m− 24] (22)

The estimated fundamental frequency over an auditory spectral
frame corresponds to the semitone with the highest value in
QA[n,m]:

F0[n] = max
m

{QA[n,m]} (23)

In Fig. 5, the auditory pitch spectrogramQA[n,m] of
a saxophone recording used in the present experiments is
displayed. Darker color in the auditory pitch spectrogram
corresponds to higher values, and each frame has a length
of 8ms. The note sequence of the recording (g3 − e♭3 − g3 −
f3−e♭3−f3−g3−e♭3−c3−g2) is quite evident in the auditory
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Fig. 5. The auditory pitch spectrogramQA[n, m] of a saxophone recording.

pitch spectrogram. The presence of low frequency noise which
can be easily removed via silence filtering can also be noticed
in the beginning of the recording and around frames 600-700,
as well as an octave error around frames 1500-1600.

In Fig. 6, the basic blocks for computing the fundamental
frequency-based onset strength signal using auditory spectra
are depicted. In order to compute the onset strength signal,
the changes over the auditory spectrum-based fundamental fre-
quency estimator will be taken into account. In our approach,
a modified version of fundamental frequency changes used in
[5] is employed:

∆F0[n] = |mod11(mod12(F0[n]))−mod11(mod12(F0[n−1]))|
(24)

From (24) it can be seen that first octave errors are removed
and afterwards spaces of 11 semitones are also considered
as octave errors and subsequently removed. Smoothing on
∆F0[n] is performed afterwards using a 3rd degree Savitzky-
Golay filter on a 64ms window [22]. A simple silence detector
is applied into the smoothed∆F0[n], using the short-time
energy of the auditory pitch spectrum,Q2

A[n,m]. Whenever a
segment in∆F0[n] contains a fundamental frequency change
whose value in the energy pitch spectrum is lower than a
threshold,∆F0[n] is set to zero. Thus, it is also possible to
detect onsets where the produced notes have the same pitch.
Local maxima on the silence-filtered∆F0[n] are subsequently
selected using a peak picking algorithm. The aforementioned
peaks correspond to the starting points of the steady-state
parts of musical notes. In order to estimate the actual onset
times from the starting points of the stable segments, an
approach similar to [7] was adopted. For each stable segment,
a window of length 230ms is employed, looking backwards
from the beginning of the stable segment. The energy of the
semitone-resolution auditory spectrogramP 2

A[n,m] is consid-
ered. The actual onset time is derived by peak picking on
P 2
A[n,m0] − P 2

A[n − 1,m0], wherem0 is the spectral bin
corresponding to the estimated fundamental frequency for the
stable segment. Thus, onset times are estimated by searching
for the largest energy increase in the bin corresponding to the
estimated fundamental frequency. It should be mentioned that
thresholdδ of detecting changes in fundamental frequency in

the 4th block is set to one semitone, but can be adjusted in
order to create P/R curves, as will be explained in Section
IV-B.

D. Fusion

It was observed in [1], [5], [7] that a combination of
descriptors for onset detection leads to improved results,since
different types of onsets are detected for each onset strength
signal. The spectral flux detects hard onsets, which exhibit
a sudden change in energy, while phase-based descriptors are
able to detect softer onsets, regardless of the signal energy. The
major drawback of spectral flux features is their inability to
detect onsets of nonpercussive sounds. In addition, the major
drawback of phase-based approaches is their susceptibility to
noisy low-energy components and phase distortions due to
post-production treatments [2]. Finally, pitch-based features
are suitable for detecting soft onsets with a gradual change
in energy, which are more difficult to detect in the energy
and phase domain. Pitch-based descriptors are not however
suitable for detecting percussive sounds which do not contain
tonal components.

A system classifying each onset as hard or soft was pro-
posed in [7], employing energy or pitch-based descriptors,
respectively. However, this approach neglects onsets detectable
by phase changes, which roughly lie between the two afore-
mentioned categories. In addition, the combination of energy
and phase-based descriptors at the complex domain as shown
in (19) will be also addressed in comparative experiments in
Section IV-C.

In our approach, we employ a fusion scheme similar to
the one proposed in [5], combining the three descriptors at
the decision level. This choice is justified by the fact that
the onset strength signals are not aligned: the spectral flux
detects the time instant with the maximum energy change at
the attack part of the signal, the phase slope detects the instant
marking the beginning of the excitation (the actual onset time),
while the fundamental frequency detects the beginning of the
stable part of the musical note, which in some cases may occur
even 0.2s after the actual onset. Thus, from each of the three
descriptors an onset strength signal is obtained, containing
either the value one at the instant of the detected onset or zero
otherwise. Since the spectral flux and fundamental frequency
onset strength signals have the same sampling frequency, the
auditory group delay-based signal is downsampled to match
the step size of 8ms for the aforementioned signals. All three
signals are summed and smoothed using a moving median
filter of 40ms length, thus creating the fused onset strength
signal. Peaks are detected being separated by a minimum peak
distance of 40ms, thus avoiding multiple peak selection forone
actual onset.

IV. EXPERIMENTS

In this section, the experimental procedure used for onset
detection will be addressed. The employed dataset will be
described, the evaluation measures used for assessment will be
defined, and the experimental results of the various descriptors,
along with comparative experiments, will be presented.
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Fig. 6. Block diagram of the computation of the fundamental frequency-based onset strength signal.

Instrument No. of onsets No. of files
Cello 150 5
Clarinet 149 5
Guitar 174 5
Kemençe 186 5
Ney 147 7
Ud 211 5
Piano 195 5
Saxophone 148 5
Tanbur 156 5
Trumpet 140 5
Violin 173 5
Total 1829 57

TABLE I
ONSET DATASET DETAILS.

A. Dataset

For testing the performance of onset detection systems, an
annotated dataset covering several musical instrument classes
with a wide range of pitch and dynamics is essential [8].
Further discussion on the creation of a dataset for onset
detection can be found in [26]. In our experiments, the dataset
introduced in [5] was employed. It consists of 57 recordings
of pitched instruments, covering 11 instrument types, as seen
in Table I. A smaller dataset was employed for parameter
tuning as in [5], which consisted of 21 guitar, piano, ud,
and violin recordings, containing overall 674 onsets. The
annotation has been done using thewavesurfer program [27],
and has been validated by three authors of [5]. For the test
dataset, the various instrument types can be organized into
three classes: pitched-percussive instruments (guitar, ud, piano,
and tanbur), wind instruments (clarinet, ney, saxophone, and
trumpet), and bowed string instruments (cello, kemençe, and
violin). It should be noted that the set is not limited to west-
ern instruments, but also contains middle-eastern instrument
samples, thus providing a more comprehensive view on the
effectiveness of onset detection features on various instrument
types. Recordings from non-pitched percussive instruments are
not included, since their onsets can be easily detected using
energy or amplitude-based descriptors. This dataset is deemed
more suitable for experiments in onset detection compared
to other compiled sets, since each instrument type contains
roughly the same number of onsets. In total, the recordings
contain 1829 annotated onsets, while each instrument type
contains roughly the same number of onsets. All recordings
are monophonic, sampled at 44.1kHz. Requests for the dataset
can be addressed to the second author.

B. Figures of Merit

For evaluating the results of the proposed onset detection
system, the recall (R), precision (P ), and F-measure (F ) are

employed as figures of merit. LetNtp, Nfp, andNfn stand
for the number of correctly detected onsets, the number of
false positives, and the number of missed onsets, respectively.
Then,P andR are defined as:

P =
Ntp

Ntp +Nfp
, R =

Ntp

Ntp +NFN
(25)

while the F-measure is computed fromP andR as:

F =
2PR

P +R
(26)

It should be noted thatP , R, and F are utilized for
evaluation in the MIREX onset detection contests, as well
as in [5], [7], [8]. An onset is correctly matched if it is
detected within 50ms of the ground truth onset time, which
is the same tolerance set for the MIREX onset detection task
[28]. The presence of several detected onsets inside the 0.1s
window counts as one correct detection, along with several
false alarms. In the case of merged onsets, where an onset is
detected within the tolerance window of two annotated onsets,
one correct detection is reported along with a missed detection.
By varying parameterδ in small steps, receiver operating
characteristic (ROC) curves can be created by placingR values
on the horizontal axis andP values on the vertical one [26].
The P /R-curve which is closer to the upper right corner of
the diagram is considered to be the best detector with regards
to F .

C. Results

The performance of the spectral flux, group delay, funda-
mental frequency estimator, and the fused system are shown in
P /R curves in Fig. 7, for all instrument families. Regarding
their optimum F-measure, the performance of the dataset is
shown in Table II, for all onset strength signals. For the
complete set of instruments the auditory spectral flux reports
the highest result of 75.9%. However, the fusion of the three
features yields a vastly improved rate of 82.6%. The achieved
rate slightly outperforms the one in [5] by 0.5%, which also
employed a fusion of the three descriptors without utilizing an
auditory model. It should be noted that the fused onset strength
signal for the complete set was created by combining the three
descriptors using their best F-measure. However, results on
the various instrument families for the fused descriptor were
produced using the threshold valuesδ for the complete set.
The performance of the isolated descriptors also outperforms
the one reported in [5], where the auditory spectral flux has an
improvement of 2% over the DFT-based spectral flux. Results
using the auditory spectrum-based fundamental frequency es-
timator also report an improvement of 1.6% over the onsets
derived by the YIN estimator.
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Feature SF GRD F0 Fusion COMP [1] Fusion [5]
Bowed Strings 69.3% 67.6% 70.3% 77.6% 61.6% 75.4%

Pitched Percussive 84.4% 83.2% 75.4% 87.7% 86.3% 88.8%
Wind 73.3% 73.9% 79.9% 81.4% 71.7% 80.1%

All Instruments 75.9% 74.2% 75.7% 82.6% 73.2% 82.1%

TABLE II
BEST F-MEASURES FOR THE VARIOUS ONSET DETECTION FEATURES AND

INSTRUMENT FAMILIES.

Concerning the statistical significance of the proposed
method’s performance compared to the method in [5], the rec-
ognizer comparison technique described in [29] was employed.
The number of onset detection errors of the two methods is
asumed to be distributed according to the binomial law. The
average error rate of the method in [5] isp̂1 = 0.1725, while
the average error rate of the proposed method isp̂2 = 0.1465.
Taking into account that the test set sizes = 1829 and
considering 95% confidence (α = 0.05), it can be seen that
p̂2 − p̂1 ≥ zα

√
2p̂1s, wherezα can be determined from tables

of the Normal law (z0.05 = 1.65). This indicates that the
peformance of the proposed method is statistically significant
compared to that in [5].

For comparative purposes, experiments were also performed
using the method proposed by Bello et al. in [1]. The descrip-
tor combining spectral and phase difference in the complex
domain was computed using the MIR Toolbox [30]. Overall,
the complex domain method reports an F-measure of 73.2%
for the complete set, shown as COMP in Table II. Although
the complex domain method reports results inferior to those
reported using the auditory spectral flux and group delay
for the complete set, the results using the pitched percussive
set outperform all auditory spectrum-based and DFT-based
approaches. The overall performance of the complex domain
approach can be attributed to the fact that the onsets in
the energy and phase-based functions are not aligned, since
the phase-based approaches detect the actual start of the
onset while energy-based approaches detect the largest energy
increase in the attack part of the note. For pitched percussive
instruments however, the attack part of the musical tone has
shorter length compared to eg. string instruments, hence the
two descriptors are aligned and reported rates tend to be high.

As far as the performance evaluation of the three instrument
families is concerned, it can be seen that the best rate is
achieved by the auditory spectral flux for the pitched percus-
sive set, reaching 84.4%. However, the SF reports much lower
rates for the bowed string and wind families. Comparing the
performance of the DFT-based spectral flux and the auditory
spectral flux for the pitched percussive set, it can be seen
that the former slightly outperforms the latter, which can
be attibuted to the lower spectral resolution of the auditory
spectrum compared to the DFT. The auditory group delay
(GRD) results are roughly the same compared to the spectral
flux for each instrument family, however the onsets derived by
the two descriptors are not identical, as is demonstrated bya
fusion of the two aforementioned features: the best reported
F-measure reaches 80.4% for the complete set, while the
rates for the three instrument families are 74.5%, 88.4%, and
78.0%. It can be seen that the reported rate for the pitched

Feature SF GRD F0 Fusion
Western instruments 76.3% 77.0% 77.7% 83.6%

Middle-eastern instruments 76.1% 70.9% 72.6% 81.0%

TABLE III
BEST F-MEASURES FOR THE VARIOUS ONSET DETECTION FEATURES FOR

WESTERN AND MIDDLE-EASTERN INSTRUMENT TYPES.

percussive set outperforms the reported rate using the fusion
of the three onset strength signals, signifying that the inclusion
of F0 estimation leads to inferior results for energy-based
onsets, however greatly improves the detection of soft onsets.
In general, theF0 estimator outperforms energy and phase
features for the string and wind families, reaching for the
latter 79.9%. This is to be expected, since onsets created
for string and wind instruments are often produced using
constant excitation, with the only detectable change beingin
the pitch domain. Concerning the distinction between western
and middle-eastern instruments (which are the bowed string
kemençe, the wind ney, and the pitched percussive ud and
tanbur), the reported F-measure for the western instruments
using the fused descriptor is 83.6% and the respective for the
middle-eastern instruments is 81.0%, as is shown in Table III.
This is to be expected, since onsets for the ney and kemençe
are occasionally not clearly defined and are more difficult to
be estimated, even for a human annotator.

Addressing the performance depicted using theP /R curves
in Fig. 7, it can be seen that the auditory group delay and
F0 estimator exhibit higher precision rates compared to the
auditory spectral flux, which however compensates with higher
recall values. For the pitched percussive set, the precision
reached using the spectral flux and fused detectors reaches
100% for a recall rate of about 50%, making them ideal for
beat tracking applications as in [9]. For the bowed strings
set, a precision rate of about 90% is reported for the fused
descriptor, for a recall of about 40%, which is also desirable
since string onsets are the most difficult to detect. Also, using
only the group delay feature, a precision of 87% is reached
for a recall rate of 38%. Finally, using theF0 estimator for
the wind instruments set a precision of 87% is reported for a
recall of 69%, making theF0 estimator also suitable for beat
tracking applications for wind instruments.

Some discussion on the performance of the various datasets
reported in the literature should follow. For the pitched non-
percussive and pitched percussive sets employed in [1], [2],
[8], reported rates reach 98.4% in terms of F-measure for
the pitched percussive data and 96.3% for the pitched non-
percussive data. However, it should be noted that the dataset
is less diverse, with the pitched percussive set consistingonly
of piano and guitar recordings and the pitched non-percussive
set consisting of solo violin recordings, thus making a direct
comparison of the rates between the two datasets impossible.
Likewise, the pitch-based method proposed in [4] employs a
dataset consisting of strings and singing voices with vibrato
present, with a reported F-measure reaching 59.9% [31]. Thus,
a fair comparison between onset detection methods can only
be made using the same dataset.
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Fig. 7. Performance curves of the various onset detection descriptors. Recall and Precision values are plotted on the horizontal and vertical axis, respectively.
A circle marker for each descriptor indicates the Recall-Precision pair which is closer to the upper left corner of the diagram.

V. CONCLUSIONS

In this paper, an approach for detecting onsets of pitched
instrument recordings using auditory spectra was proposed.
The group delay function and the spectral flux were derived for
the auditory framework, and a novel fundamental frequency
estimation algorithm using auditory spectra was presented.
Experiments performed on a diverse dataset of pitched in-
strument recordings indicate that the auditory features show
an improvement over standard state-of-the-art approachesfor
onset detection. In specific, the auditory spectral flux reached
a high performance for detecting onsets of pitched percussive
instruments, while a fusion of the spectral flux and group
delay features at the decision level reached even better results.
In addition, the auditory group delay and the fundamental
frequency estimator report high precision rates for all instru-
ment types, with the latter reaching high detection rates for
string and wind instruments, whose onsets are more difficult
to detect due to gradual energy changes. The combination
of the three onset strength signals yields improved results,
performing slightly better compared to the system proposed
in [5], with the performance gain shown to be statistically
significant.

In the future, the proposed algorithm for fundamental fre-
quency estimation can be modified for multi-pitch estimation.
In addition, the creation of an onset detection system which

is dependent on the instrument family may possibly lead to
improved results, as has been argued in previous MIREX
competitions. The system could also consider onsets produced
by non-pitched percussive instruments, which can be easily
detected using energy descriptors. Finally, performance styles
such as vibrato and ornamentations need to be taken into
account for suppression in the creation of a truly robust onset
detection system.
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[10] A. de Cheveigné and H. Kawahara, “Yin, a fundamental frequency
estimator for speech and music,”The Journal of the Acoustical
Society of America, Vol. 111, No. 4, pp. 1917-1930, 2002.

[11] R. Zhou and M. Mattavelli, “A new time-frequency representation
for music signal analysis: resonator time-frequency image,” in
Proc. 9th Int. Symp. Signal Processing and Its Applications, pp.
1-4, Feb. 2007.

[12] A. Klapuri, “Sound onset detection by applying psychoacoustic
knowledge,” in Proc.IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, pp. 3089-3092, March 1999.

[13] K. Jensen, “A causal rhythm grouping,” in Proc.2nd Int. Symp.
Computer Music Modeling and Retrieval, May 2004.

[14] N. Collins, “A comparison of sound onset detection algorithms
with emphasis on phsychoacoustically motivated detectionfunc-
tions,” in Proc.AES 118th Convention, May 2005.

[15] M. Gainza, E. Coyle, and B. Lawlor, “Onset detection using comb
filters,” in Proc.IEEE Workshop Applications of Signal Processing
to Audio and Acoustics, pp. 263-266, 2005.

[16] P. Ru, “Multiscale multirate spectro-temporal auditory model,”
PhD Thesis, Univ. Maryland College Park, 2001.

[17] X. Yang, K. Wang, and S. A. Shamma, “Auditory representations
of acoustic signals,”IEEE Trans. Information Theory, Vol. 38, No.
2, pp. 824-839, March 1992.

[18] T. F. Quatieri,Discrete-Time Speech Signal Processing, Prentice
Hall, 2001.

[19] M. Brookes, P. A. Naylor, and J. Gudnason, “A quantitative
assessment of group delay methods for identifying glottal closures
in voiced speech,”IEEE Trans. Speech and Audio Proc., Vol. 14,
No. 2, pp. 456-466, March 2006.

[20] A. V. Oppenheim, R. W Schafer, and J. R. Buck,Discrete-Time
Signal Processing, Prentice Hall, 1998.

[21] T. Chi and S. A. Shamma, “NSL Matlab Toolbox,” http://www.
isr.umd.edu/Labs/NSL/Software.htm, Neural Systems Lab., Univ.
Maryland.

[22] A. Savitzky, and M. J. E. Golay, “Smoothing and Differentiation
of Data by Simplified Least Squares Procedures,”Analytical
Chemistry, Vol. 36, No. 8, pp. 1627-1639, July 1964.

[23] I. Kauppinen, “Methods for detecting impulsive noise in speech
and audio signals,” in Proc.14th Int. Conf. Digital Signal Proc.,
Vol. 2, pp. 967-970, July 2002.

[24] P. de la Cuadra, A. Master, and C. Sapp, “Efficient pitch detection
techniques for interactive music,” in Proc.Computer Music Conf.,
Sep. 2001.

[25] A. M. Noll, “Pitch determination of human speech by the harmonic
product spectrum, the harmonic sum spectrum and a maximum
likelihood estimate,” in Proc.Symposium Computer Processing
in Communications, Vol. XIX, Polytechnic Press: Brooklyn, New
York, pp. 779-797, 1970.

[26] P. Leveau, L. Daudet, and G. Richard, “Methodology and tools for
the evaluation of automatic onset detection algorithms in music,” in
Proc.5th Int. Conf. Music Information Retrieval, pp.72-75, 2004.
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