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Auditory spectrum-based pitched instrument onset
detection

Emmanouil Benetostudent Member, IEEE and Yannis StylianouMember, |IEEE

Abstract—In this paper, a method for onset detection of music like the piano, onsets are located by amplitude changesein th
signals using auditory spectra is proposed. The auditory sgctro-  spectrum. However, for a string instrument like the celheg t
gram provides a time-frequency representation that emplog a  4nset can be produced using a constant excitation, without
sound processing model resembling the human auditory syste . o
Recent work on onset detection employs DFT-based features f';lny noticeable energy ghange. Several approac.hes f0|_epi|tch
describing spectral energy and phase differences, as wel aitch-  instrument onset detection have been proposed in thetiitera
based features. These features are often combined for maxining [2], however they are mostly limited to a small number of
detection performance. Here, the spectral flux and phase sfe instrument classes. In addition, most results presenteten
features are derived in the auditory framework and a novel jiaratyre concern individual instrument families, pretieg

fundamental frequency estimation algorithm based on audibry | timisti f t Most techni ot
spectra is introduced. An onset detection algorithm is propsed, CVErY OpUMISUC performance rates. Vost techniques mly

which processes and combines the aforementioned featurestae DFT-based features, neglecting psychoacoustic models tha
decision level. Experiments are conducted on a dataset caiey are able to mimic the human auditory system. It should be

11 pitched instrument types, consisting of 1829 onsets intal. noted that there exists a difference between the actuatonse
Results indicate that auditory re_presentations outper_fom val_rious produced by instruments and perceptual onsets, caused by
state-of-the-art approaches, with the onset detection atgithm . L : . -
reaching an F-measure of 82.6%. a noticeable change in intensity, pitch and tlmbre_of the
sound [3]. In [4], it was observed that onsets perceived by
human annotators appeared late compared to automatic onset
detection systems.
Most onset detection techniques focus on the creation of
an onset detection function (also called onset strengthasig
HE detection of the starting time of each musical noter novelty function), whose peaks denote the presence of
plays an important role in the analysis of music sigan onset. Onset detection functions are derived by detgctin
nals. This process is referred to as musical instrumenttonshanges in certain audio signal features, and they usuallg h
detection and it is an essential step for music transcriptitower sampling rate compared to the original signal. Onsets
applications, as well as for music signal compression, beat finally derived by employing a peak picking procedure on
tracking, audio editing applications, and music informati the onset detection function. Most onset detection appeac
retrieval. The goal of an onset detection system is the ateurutilize features detecting changes in the energy or phase
estimation of note onset times, regardless of the instraimetomain. Energy changes are most useful in detecting hard
type or performance style. onsets, usually produced by percussive instruments, while
Musical instruments can be roughly categorized into thrggase-based changes are able to detect soft onsets, which
families: non-pitched percussive, pitched percussived adenote the beginning of an excitation but may not indicate
pitched non-percussive [1]. For the first category, thetwea a change in signal energy [2], [5]. All proposed techniqures i
of an onset detection system is a relatively simple taslcesinthe literature employ processing in different frequencpdsa
percussive onsets are characterized by sudden energyesharfgr the aforementioned features, which improves conshilgra
However, the detection of onsets of pitched instruments isoaset detection accuracy. An example of an onset detection
nontrivial task, since the way the onsets are producedgebar system using subband processing is the one proposed by
dependent on the instrument type. For a percussive instrumBuxbury et al. [6], which uses subband decomposition and

o . o employs different descriptors for each frequency regions.
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phase slope features in the complex domain. The employled[13], the perceptual spectral flux was introduced as a
dataset contained pitched nonpercussive, pitched péreussfeature for onset detection, which employs a weighted STFT,
nonpitched percussive, and complex sounds, comprising 10@eighting frequency bands according to the human loudness
onsets in total. Reported results indicated an improvemet contour. In [14], a comparison between the approach in [1]
energy and phase-based approaches. An improved versiommd the psychoacoustically motivated approaches in [13], [
the system in [1] was proposed in [8], tested on the samas performed. Finally, Gainza et al. [15] employed FIR comb
dataset. The dataset used for evaluation in [8] was the safiters on a frame by frame basis combining the inharmonicity
as in [1], with the inclusion of a separate dataset congjstiproperties with the energy increases of the signal onset.
of 106054 piano onsets derived from Mozart piano sonatas. The auditory spectra, based on the model presented in [16],
In [9], the negative derivative of the unwrapped phase ovare designed to mimic the functions of the human auditory
frequency, also called group delay function, was proposegistem. In this paper, an approach for onset detection is pro
for onset detection in a beat tracking application. The groposed by employing auditory spectra instead of DFT-derived
delay function denotes the distance between the centerspkctra for the computation of onset detection featureseMo
an analysis window and the position of an impulse creategecifically, the group delay function and the spectral fltex a
by a minimum phase signal. Since musical instruments cderived in the auditory framework. In addition, an auditory
be considered as causal and stable filters, the usage of dhectrum-derived fundamental frequency estimator based o
group delay function was justified. Thus, onsets were detiecthe harmonic product spectrum technique is developed.,Then
by estimating the positions of positive zero-crossingshef t an onset detection system is finally suggested, combiniag th
group delay function. Multiband analysis was performed asforementioned three descriptors at decision level. Compa
two datasets, the first from the MIREX 2006 beat trackingtive experiments on onset detection were performed using
task and the second containing samples of traditional Gretle complex domain phase and energy descriptor used in
music. In [5] the group delay function, the spectral diffese [2]. The employed dataset for experimentation was intreduc
and the fundamental frequency change features were cothbifre [5] and contains a wide variety of pitched instrument
at decision level for an onset detection system. A datasgpes, not limited to western instruments, containing 1829
containing samples from 11 different pitched instrumerds wonsets in total. Results indicate that the isolated augitor
developed, which is also used in the present experimerdescriptors reach high precision values for onset detectio
The fundamental frequency was extracted using the Yidutperforming the respective DFT-based features. Fintily
algorithm [10] and the aforementioned features were cogatbincombined onset strength signal of the three auditory speetr
at decision level. Results indicated an F-measure of 82dt% tlerived descriptors performs slightly better compareddtes
the fused onset detection function, which was an improvémeysi-the-art approaches for onset detection employing DFT-

of about 11% for each single descriptor. based techniques, reaching an F-measure of 82.6%.
In [4], a system for onset detection employing a constant-The outline of the paper is as follows. The employed
Q pitch detector was proposed, tested on the pitched nefiditory model is presented in Section Il. In Section I,

percussive sounds also employed in [1]. The pitch detedfion the spectral flux and group delay function are derived for
gorithm employs a maximum likelihood approach, attemptingle auditory spectrum, a fundamental frequency estimation
to correlate a harmonic template with the constant-Q spectr algorithm using the auditory model is presented and the
in order to find the best fitting fundamental frequency. Aproposed onset detection system is discussed. The employed
algorithm for vibrato suppression is also introduced, @hildataset, the methods used for evaluation and the expegiment

results indicate an improvement over phase-based andyenefgsults are discussed in Section IV. Conclusions are drain a
based approaches. The actual onset times were derivedflvire directions are indicated in Section V.

the stable segment times by simply subtracting about 140ms
from the detected time instant. It is also suggested in [4] th
a detector based on a computational auditory model might II. AUDITORY MODEL
improve onset detection performance. Another onset detect . o .
system employing pitch estimation was introduced in [7], Th_e audltory_m_odel_was first mtr_oduc_ed in [17] and formal-
which utilizes an energy descriptor for detecting hard tms zed in [16]. It.|s |nsp|req by .phy5|olog|cal, psy_choacocmt.
and a pitch descriptor for detecting soft onsets. Insteatthef and computational stu@es in the human primary "’.‘“.d'tory
DFT, the resonator time-frequency image was used for feat (P tex- The.model con;@ts of two Stag‘?s' a spect_ral estimat
extraction [11]. For the detection of the onset times from tH“OdeI (designed to mimic the cochleg In th_e gudltory sy_stem)
stable segments derived by pitch, a window of length 300rﬁ93_ a_spectral ?ﬁlyS's m0(|1el (.Wh'(.:h mlm(ljcsl thed ptrllmary
looking backward from the beginning from the stable segme‘?“j |t(TIrydcortOe|_x). e spectral estimation model produbes t
was used, searching for increase in energy at the freque’enc:y%o'Ca ed au ltory spectrogram. i
corresponding to the detected pitch. The MIREX 2007 onset '€ auditory spectrum produces a time-frequency repre-
detection dataset was employed and the method proposed§ftation of the signal on a logarithmically scaled freqyen
[7] outperformed all competing approaches. axis, referred as the tonotopic axis. The auditory specaig

As far as systems employing psychoacoustically motivat§gnSists of 128 log-frequency bins and can be approximated

models are concerned, a filterbank system was introduced®h
[12], which uses the loudness of each band as a descriptor. X a[n, 1] = max(9,g(Onxz[n] %, hin,l]),0), (1)
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where z[n] is the original signal and[n,!] is @ minimum- 15 x x x x x :

phase seed bandpass filter whéie,!] = ahlan,ly], with 1

. . |
scaling factora = 2/=% and! = 1,...,129. The Fourier v //‘l S /”1 /‘\ AR AR
transform of h[n,l] for a given | satisfies the following 5[ K {/ ‘1 P A VA A A 1
property: 22—, H(w). The convolution ofz[n] with o - M . ’HA'A?\ o ' |
h[n,l] is an application of a constant-Q filter-bank wavele a ) A P Ao
. L . -0.5H' T A U B A B / E
transform. In (1),0; denotes the partial derivative ovgrand SO N A B AL VR

9(m) = 172==— 3 is a sigmoid-like function, which is used to -1
model the hair cell response in the human auditory system , . ‘ ‘ s s ‘ ‘
should be noted that in (1) two operations are not mention © 500 1000 1500 2000 2500 3000 3500
for purposes of simplicity. The first consists of a tempora Samples

smoothing operation which filters out responses beyond 4 kiHg. 1. A sequence of impulses with linearly time varying ditndes, the
and the second consists of a temporal integratioX @fn, ], associated DFT-based group delay function (dashed lime) tfze associated
which is followed by subsampling. In general, the auditor§Hdito"y spectrum-based group delay function (dashetédidne).
spectrogram is relatively insensitive to broadband change

the spectral shape and it is more robust against noise cechpar
to the DFT-derived spectrogram [16]. Thus, the negative derivative of the phase ovef the analytic

signal is expressed in the form:

Ill. AUDITORY SPECTRUM-BASED ONSETDETECTION

oo[n, 1 1 0X4n,l
In this section, the system developed for onset detection 7[n,l] = — %Z ] = —%(X ] : 37[? ]) @)
using auditory spectra will be presented. First, the phigees Al
and spectral flux features will be derived for the auditory
framework. Then, an algorithm for fundamental frequenca/
o . : . . u
estimation using auditory spectra will be suggested. Kinal
the fusion of the aforementioned descriptors will be diseds

In the following analysis, the Fourier transforms of the
ditory spectra will be utilized for convenience. Thus:

F{Xaln} = X(w)H(w,1) (8)
Xaln,l
A. Auditory Group Delay ]:{8277[1"’]} = jwX(w)H(w,!) (9)
In [5], [9] the group delay function was computed in the OX aln, ]
DFT domain as: f{#} = sgnw)wX(w)H(w,l)  (10)
GRDw, k] = XR[”"“]YR[”;] +kX;[”’k]YI[w’k] ) .
| X[w, k]| where X (w) and H(w,!) denote the Fourier transform of

where X [w, k] andY'[w, k] are the DFTs ofc[n] andnz[n], z[n] andh[n,l], respectively. We proposga[n,l] = z[n] ,
respectively and the subscriptsand ; denote the real and nh[n,(]. By employing the definition oh[n, ] in Section II,
imaginary parts of the DFTs. The auditory spectrum howev&n[n,!] can be formed in the Fourier domain as:

does not contain any imaginary parts, thus phase informatio

will be extracted using the analytic signal representatibn F{Yan,l]} = —-wXw)Hw,I) (11)
the auditory spectrum [18]. In our analysis, the phase slope F{Valn, ]} = jsgnw)wX (w)H (w,1) (12)
(also called instantaneous frequency) in the auditorytspec

is computed in a way similar to [19]. For simplicity PUrposessing (9) and (12), it can be seen that:
n will refer to the continuous domain. The following approx- ’

imation for the auditory spectrum will be used: . X aln. 1
F) = sorwr{ A
~ 1 j 0X l
taking into account the constant-Q wavelet transform, tvingc Yaln,l] = =(d[n]+ J *nM
. . . : 2 ™ on
the most important part in the auditory spectrum formufatio .
The analytic signal representation &f4[n, I] is defined as: _ 10Xand  1.0Xaln Y 4
= +5J (13)
. 2  On 2 on
XA[nvl] = XA[nal] +.]XA[nal]7 (4) . . )
where X 4[n,[] is the Hilbert transform ofX 4[n, 1] overn Likewise, using (10) and (11):
[20]. The analytic signal can also be expressed in polar form ax ]
as: ‘ F{Yan,ll} = —Sgr(w)]:{#}é
Xaln,1) = pfn, e, (5) o J
where p[n, k] is the magnitude of¥4[n,I] and ¢[n,i] its Yaln,] = —3 o[n]) + = *n—p
respective phase. Following (5){n,!] can be expressed as: . T K
- 18XA[TL,Z] 1 ,BXA[TLJ] 14
Bl 1) = S(n(Xa[n, 1)) (6) = 3 2 am @
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Combining (13) and (14): 5r0 N N N " N .
Yalnd] = Yaln, ] +j¥aln,1] S AN A AR AR AR AN AN A A
__0Xan, ] L j0Xaln K] st 1
on on l ]
_0X4[n, K]
= T 1) o |
Substituting (15) into (7): 0 |
B Yaln, 1]\ Yan,l] Al A
wi=n(Prn)-Tihy 09 |
It can be seen that the definition ofn,!] in (16) closely ‘ ‘ ‘ : ‘ ‘

resembles the definition of the DFT-based group delay, | 20 100 200 300 400 500 600 700 800 900 1000
removing the imaginary parts of (2). In addition, it can b Frame No.
seen that no average value has been computed for neighboring _ _
bands as is the case for the DFT-based phase slope. Thus_ffie" The ba':jd'w'se mean(iRD of a tanbur recording. The dotted
al s correspond to the ground truth, while the ‘X’ markerreponds to

usage of the ternauditory group delay instead of auditory onsets detected by peak picking on the detection signal.
phase slope is justified. In Fig. 1, an example of a DFT-based
phase slope function is depicted by the dashed line which
has positive zero crossings at the position of impulses én th tanbur (plucked string instrument) recording is depickd
signal, along with the auditory spectrum-based group delagak picking on the detection signal, seven onsets aretddtec
function, depicted as a dashed-dotted line, which is obthinwhile two missed detections occur.
when shifting an analysis window over a sample signal. It canOnsets are detected from the auditory group delay onset
clearly be seen that the auditory group delay exhibits paaksstrength signal by a selection of local maxima. First, the
the position of impulses in the signal. auditory group delay detection function is normalized gsin

The processing steps for the computation of the onsescore standardization. Afterwards, a moving mediarr fiffe
detection signal based on the auditory group delay functidength 0.2s is computed as an adaptive threshold, which is a
can be seen in Fig. 2. The auditory spectrum is computed usiogpust method for detecting impulses in audio signals [23].
the NSL toolbox [21]. For the computation of the auditoryrhe adaptive threshold is then subtracted from the detectio
spectrum the window length is set to 0.1s, with 4.5ms hop siggnals. Finally, peak picking is performed, by selectirgls
and the resulted spectrogram is computed for a bandwidthtbéit are higher than thresholdl and are separated by a
76-3242 Hz. In processing block 2, the auditory group delaginimum peak distance of 40ms.
function is computed from auditory spectrogramXs[n, (]
and Y[n,l] using (16). For our analysis, tonotopic band .
b=1,. .[. , 1]20 of the auditory spectrogram were utilized, thus™ Auditory Spectral Flux
ignoring bands containing high-frequency noise. In preiteg =~ The spectral flux in the Fourier domain measures the
block 3, the group delay deviation oveiis calculated for each magnitude changes in each frequency bin [8] which indicate
band, by using two frames as a hop size, as in [1], [2]:  attack parts of new notes [5]. The spectral flux can be used
effectively for onset detection of percussive signals, isit
performance decreases when soft onsets are located [1]. In
[5], the spectral flux was computed using the L1 norm:

AGRDIn,l] = A7r[n, ] + At[n — 1,1] = 7[n,l] — 7[n — 2,1]
(17)

where Ar[n,l] = 7[n,l] — 7[n — 1,1]. In processing block

4 of Fig. 2, each band is smoothed in time using a 3rd  SF[k] :ZHW(|X[W’k]|_ | X [w, &k —1]]) (18)

degree Savitzky-Golay filter with window size equal to 12 w

samples [22]. The Savitzky-Golay filter uses local ponﬂmiwhereX[n, K is the DFT of the original signal at thi-th

regression and is considered superior compared to FIRsfiIt(?rr quency bin anda-th frame andHW (z) = 2+l2] is the

) ; . . 5
or moving average f||t_ers, preserving the Ipcal maxima %fZIf—wave rectifier function. The descriptor combining pha
the signal while rejecting noise. In processing block 5, for

each band ofAGRDIn,l], peak picking is performed in and spectral flux proposed in [1], [8] which will be used for

: erformance comparison results in Section |V is formulated
order to select candidate onsets. For each band, an orpse{ P

detection signal is constructed containing either theevakro as follows:

when no peak has been detected, or the amplitude of the 51
detected peak. In each bahgda threshold for peak detection CD[n] = Y [X[n, k] — [X[n — 1, k]|e? "~ 1M+ In=1H)
is determined separately by the mean value of the half-wave k=—2
rectified auditory group delay function for the particulanil. (19)

Finally, all band-wise detection signals are summed, trga wherei[n, k| is the phase o [n, k].
single onset detection signal based on the auditory grolay.de The spectral flux in the auditory domain is defined in a
In Fig. 3, the band-wise mean of the smooth&d’RD for similar manner to the DFT-based spectral flux in (18), using
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wav | AUDITORY GROUP . BAND PEAK AUD_GRD
SPECTR. DELAY ‘ SMOOTHING PICKING ®

Fig. 2. Block diagram of the computation of the auditory $pen-based group delay.

0.9 v v v v v produced by pitched non-percussive instruments are héoder
detect using the aforementioned methods, due to the fact tha
the sounds are produced with a constant excitation [5], [7].
07 v v \ A v v 1 Thus, the only detectable change of a soft onset is in the
pitch domain. A brief overview for pitch detection technégu

for music processing can be found in [24]. As far as onset
0.5} 1 detection experiments using pitch estimation are concgrne
Collins [4] employed a constant-Q pitch detector, choosing
a best matching harmonic template, which is a variant of
0.3} i the maximum likelihood (ML) approach [25]. Zhou et al.
proposed a pitch detection algorithm based on the resonator

08F x X X X X X X X 1

0.6 ]

0.2 1 time-frequency image [7]. Finally, Holzapfel et al. [5] lited

01 ) the YIN fundamental frequency estimator [10], which is a
L N " M\m L modified version of the autocorrelation method for pitch

% 100 200 300 400 500 o0  €stimation.

Frame No. For our experiments, we propose a fundamental frequency
estimation algorithm which is based on auditory spectra.

Fig. 4. The auditory spectral flux of a trumpet recording. Toged arrows i ic i i i
correspond to the ground truth, while the ‘X’ marker cormg® to onsets The algorlthm IS |nsp|red by the harmonic product spectrum

detected by peak picking on the auditory spectral flux. (HPS) algorithm, which was proposed by Noll [25]. The
HPS algorithm is based on multiplying spectral frames which

are subsampled by different integer values as to align the
the L1 norm: harmonics. The resulting product of the subsampled spectra
frames is searched for a maximum value which denotes
AUD_SF[n] = ZHW(XA[”J] — Xaln—=11]). (20) the fundamental frequency for the current frame. The HPS
! algorithm is relatively inexpensive due to FFT computation
It should be noted that the L1 norm is favored over the Land resistant to noise, compared with ML approaches. A
norm for spectral flux computation [8]. For the creation of adrawback of the HPS algorithm is the presence of octavesrror
onset strength signal derived from the auditory spectral, flun fundamental frequency measurements, which however can
the original signal is resampled to 8kHz and the spectral flise corrected by post-processing operations [24].
is computed with a step size ofrB, without overlapping. It ~ Since the auditory spectrum produces 24 coefficients per
should be noted that no band-wise smoothing or band setectaxtave (1 bin corresponds to 50 cent units), the first step for
was performed on the auditory spectral flux, since it was doutthe proposed algorithm is the creation of a semitone-réisolu
to degrade onset detection performance. This was the casauditory spectrogram:
soft onsets produced by string instruments, where the epeel
of the specriral flux de)z/tectioa function was much smgother Pa[n,m} = Xaln, 2m — 1] + Xa[n, 2m] (21)
compared to the envelope of the detection function producetiere m = 1,...,64. Since the auditory spectrogram is
by hard onsets. Onsets from the auditory spectral flux adefined on a logarithmic scale, the proposed auditory pitch
detected in a similar way to the auditory group delay onsspectrogram is defined as a product of translated auditory
strength signal: z-score normalization is performed, aimpv spectral frames:
median filter of 0.2s is employed as an adaptive thresholdi, an
finally peak picking is performed using the threshéldn Fig. aln,ml = Pafn,m] - Paln,m —12]- P4[n,m —24] (22)
4, the auditory spectral flux of a trumpet recording is degaict The estimated fundamental frequency over an auditory sglect
As can be seen, onsets derived from the auditory spectral fluxme corresponds to the semitone with the highest value in
occur within a short delay compared to the actual annotatiaf 4[n, m|:

This is due to the fact that the spectral flux detects the $drge Foln] = max{Qa[n,m|} (23)
energy increase in the attack part of the note and not thalactu ) o
onset time. In Fig. 5, the auditory pitch spectrogra 4[n,m| of

a saxophone recording used in the present experiments is
o displayed. Darker color in the auditory pitch spectrogram
C. Fundamental Frequency Estimation corresponds to higher values, and each frame has a length
While hard onsets can be easily detected using algorithwis8ms. The note sequence of the recording-{gs — g5 —
measuring energy differences over time, soft onsets whieh &; —ev; —f3 —g; —e3—C3—0,) is quite evident in the auditory
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60} | ‘ ‘ ‘ ‘ ‘ ‘ { the 4th block is set to one semitone, but can be adjusted in
order to create P/R curves, as will be explained in Section
50 1 IV-B.

4or 1 D. Fusion

It was observed in [1], [5], [7] that a combination of
descriptors for onset detection leads to improved ressilise
ol = N — different types of onsets are detected for each onset streng
. signal. The spectral flux detects hard onsets, which exhibit
10l B | asudden change in energy, while phase-based descripéors ar

able to detect softer onsets, regardless of the signal yring
i S ‘ m ‘ ‘ ‘ major drawback of spectral flux features is their inability t
2000 400 e00 890 1000 12000 1400 detect onsets of nonpercussive sounds. In addition, thermaj
' drawback of phase-based approaches is their susceptioilit
Fig. 5. The auditory pitch spectrograéh [n, m] of a saxophone recording. NoiSy low-energy components and phase distortions due to
post-production treatments [2]. Finally, pitch-basedtdess
are suitable for detecting soft onsets with a gradual change
pitch spectrogram. The presence of low frequency noisetwhig, energy, which are more difficult to detect in the energy
can be easily removed via silence filtering can also be noticend phase domain. Pitch-based descriptors are not however
in the beginning of the recording and around frames 600-7Qfitable for detecting percussive sounds which do not aonta
as well as an octave error around frames 1500-1600. tonal components.

In Fig. 6, the basic blocks for computing the fundamental A system classifying each onset as hard or soft was pro-
frequency-based onset strength signal using auditorytrspegosed in [7], employing energy or pitch-based descriptors,
are depicted. In order to compute the onset strength sign@lspectively. However, this approach neglects onsets e
the changes over the auditory spectrum-based fundamestal by phase changes, which roughly lie between the two afore-
quency estimator will be taken into account. In our approacfentioned categories. In addition, the combination of gper
a modified version of fundamental frequency changes usedaifid phase-based descriptors at the complex domain as shown
[5] is employed: in (19) will be also addressed in comparative experiments in
AFyn] = [Mod (Modhs (Fo[n]))~modia (modis (Fpln—1])|  Section VC. . -

24) In our approach,_ we employ_ a fusion scheme S|m|lar to
From (24) it can be seen that first octave errors are remoVg§ °Ne p_roposed n [.5]' Cor_“b'rP'”Q th_e_ three descriptors at
and afterwards spaces of 11 semitones are also considé ddeCISIOI‘l level. T_hls choice is Jus_tn‘led by the fact that
as octave errors and subsequently removed. Smoothing onset strength signals are not aligned: the spectral flux

AFy[n] is performed afterwards using a 3rd degree Savitzk etects tEe timefir;\stant Wilth rfhe rr]naximlum ednergy cf;;r]ﬁe at
Golay filter on a 64ms window [22]. A simple silence detecto € attack part of the signal, the phase slope detects t S

is applied into the smoothedh Fy[n], using the short-time marking the beginning of the excitation (the actual onseeji

energy of the auditory pitch spectrur@2 [n, m]. Whenever a while the fundamental frequency detects the beginning ef th

segment inA Fy[n] contains a fundamental frequency chang%[ableop;‘rt Off thehmu5|cal Inote, Wh_'lf:hh In ?ome casre]zs ][niy Oﬁcur
whose value in the energy pitch spectrum is lower than SYen 0.2s after the actual onset. Thus, from each of the three

threshold,AFy[n] is set to zero. Thus, it is also possible t gscriptors an onset strength signal is obtained, congini

detect onsets where the produced notes have the same pﬁ&tn.er t_he val_ue one at the instant of the detected onsetor ze
Local maxima on the silence-filtereNiF [n] are subsequently otherwise. Slnce_ the spectral flux and fundamental frequenc
selected using a peak picking algorithm. The aforemenmiongns_et strength Zlglnalsbhavg th_e sallmedsamplmg flre(?uem:y, tu
peaks correspond to the starting points of the steady-stqgéd'tory g_roupf 88 ay-f asre]z s]:gna IS _owndsa_mpei tX”mr? tc
parts of musical notes. In order to estimate the actual ond%t stlep siz€ 0 msd or td €a orehmgntlo_ne signais. Allet (rje
times from the starting points of the stable segments, jtgnai j(r)e sulmm::‘h ‘3:‘ smootF € thu5|fng admowr:g tme |{ahn
approach similar to [7] was adopted. For each stable segm _t{er 0 ms lengin, thus creating the fused onset streng

a window of length 230ms is employed, looking backwar _gnal. Peaks are detected being separated by a minimum peak

from the beginning of the stable segment. The energy of t iptance of 40ms, thus avoiding multiple peak selectiorfu

semitone-resolution auditory spectrogrdth|n, m] is consid- actual onset.

ered. The actual onset time is derived by peak picking on

P2%[n,mo] — P3[n — 1,my], wheremy is the spectral bin IV. EXPERIMENTS

corresponding to the estimated fundamental frequencynfor t In this section, the experimental procedure used for onset
stable segment. Thus, onset times are estimated by segrchigetection will be addressed. The employed dataset will be
for the largest energy increase in the bin correspondingéo tdescribed, the evaluation measures used for assessmkie wil
estimated fundamental frequency. It should be mentionad tldefined, and the experimental results of the various ddecsip
thresholdd of detecting changes in fundamental frequency ialong with comparative experiments, will be presented.

30 b
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Fig. 6. Block diagram of the computation of the fundamentatjfiency-based onset strength signal.

Instrument [ No. of onsets| No. of files |

employed as figures of merit. Lé¥;,, N¢,, and Ny, stand

gf;{'r?net 128 g for the number of correctly detected onsets, the number of
Guftar 174 5 false positives, and the number of missed onsets, respictiv
Kemenge 186 5 Then, P and R are defined as:
Ney 147 7
Ud 211 5 Ny Nip
Piano 195 5 =, R=—"—"7-— (25)
Saxophone 148 5 Nip + Nip Nip + Nrn
Tanbur 156 5 . . .
Trumpet 140 5 while the F-measure is computed frofhand R as:
Violin 173 5
Total 1829 57 F = 2PR (26)
P+ R
TABLE | .
ONSET DATASET DETAILS. It should be noted thaTP, R, and F are utilized for

evaluation in the MIREX onset detection contests, as well

as in [5], [7], [8]- An onset is correctly matched if it is

detected within 50ms of the ground truth onset time, which
A. Dataset is the same tolerance set for the MIREX onset detection task

For testing the performance of onset detection systems, [4f]: The presence of several detected onsets inside tfse 0.1
annotated dataset covering several musical instrumessaga Window counts as one correct detection, along with several
with a wide range of pitch and dynamics is essential [S\jf_;llse alarms. In the case of merged onsets, where an onset is
Further discussion on the creation of a dataset for onstgtected within the tolerance window of two annotated anset
detection can be found in [26]. In our experiments, the @ata@N€ correct detection is reported along with a missed detect
introduced in [5] was employed. It consists of 57 recording®y varying parametes in small steps, receiver operating
of pitched instruments, covering 11 instrument types, as seeharacteristic (ROC) curves can be created by plasinglues

in Table I. A smaller dataset was employed for paramet@ the horizontal axis ané values on the vertical one [26].
tuning as in [5], which consisted of 21 guitar, piano, udrhe I_D/R-cur\_/e WhIC.h is closer to the upper right corner of
and violin recordings, containing overall 674 onsets. Thtbe diagram is considered to be the best detector with regard

annotation has been done using tavesurfer program [27], © .
and has been validated by three authors of [5]. For the test
dataset, the various instrument types can be organized i&to
three classes: pitched-percussive instruments (gudapiano,
and tanbur), wind instruments (clarinet, ney, saxophond, a The performance of the spectral flux, group delay, funda-
trumpet), and bowed string instruments (cello, kemengd, amental frequency estimator, and the fused system are shown i
violin). It should be noted that the set is not limited to westP/R curves in Fig. 7, for all instrument families. Regarding
ern instruments, but also contains middle-eastern ingnimtheir optimum F-measure, the performance of the dataset is
samples, thus providing a more comprehensive view on tekown in Table I, for all onset strength signals. For the
effectiveness of onset detection features on varioustimsgnt complete set of instruments the auditory spectral flux respor
types. Recordings from non-pitched percussive instrusnar@ the highest result of 75.9%. However, the fusion of the three
not included, since their onsets can be easily detectedyusigatures yields a vastly improved rate of 82.6%. The ackieve
energy or amplitude-based descriptors. This dataset ime@e rate slightly outperforms the one in [5] by 0.5%, which also
more suitable for experiments in onset detection comparemployed a fusion of the three descriptors without utiljzam
to other compiled sets, since each instrument type contaiglitory model. It should be noted that the fused onsetgtren
roughly the same number of onsets. In total, the recordingignal for the complete set was created by combining theethre
contain 1829 annotated onsets, while each instrument tygscriptors using their best F-measure. However, results o
contains roughly the same number of onsets. All recordintf®e various instrument families for the fused descriptoreve
are monophonic, sampled at 44.1kHz. Requests for the datggeduced using the threshold valuédor the complete set.
can be addressed to the second author. The performance of the isolated descriptors also outpmgor
the one reported in [5], where the auditory spectral flux hras a
improvement of 2% over the DFT-based spectral flux. Results
using the auditory spectrum-based fundamental frequesicy e
For evaluating the results of the proposed onset detectiimator also report an improvement of 1.6% over the onsets
system, the recallK), precision ), and F-measureK) are derived by the YIN estimator.

Results

B. Figures of Merit
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Feature SF GRD Fo Fusion | COMP [1] | Fusion [5] Feature SF GRD Fo Fusion
Bowed Strings 69.3% | 67.6% | 70.3% | 77.6% 61.6% 75.4% Western instruments 76.3% | 77.0% | 77.7% | 83.6%
T 1 0, 0, 0, 0, 0, 0, - -
P'tChesv;gm“SS've %'goﬁ sgguﬁ ;g'goﬁ: 21'4710;: 3?302 gg?oﬁ: Middle-eastern instrument$ 76.1% | 70.9% | 72.6% | 81.0%
Al Instruments | 75.9% | 74.2% | 75.7% | 82.6% 73.2% 82.1%
TABLE Il
TABLE Il BESTF-MEASURES FOR THE VARIOUS ONSET DETECTION FEATURES FOR
BESTF-MEASURES FOR THE VARIOUS ONSET DETECTION FEATURES AND WESTERN AND MIDDLE-EASTERN INSTRUMENT TYPES

INSTRUMENT FAMILIES.

grcussive set outperforms the reported rate using therfusi

Concerning the statistical significance of the propos he th h sianals. sianifving that thesi
method’s performance compared to the method in [5], the r _the three onset strength signals, signifying that thision

ognizer comparison technique described in [29] was emnloyé)f Fy estimation leads to inferior results for energy-based

The number of onset detection errors of the two methods 38S€tS: however greatly improves the detection of softtense

asumed to be distributed according to the binomial law. Td@ general, thefy estimator outperforms energy and phase

average error rate of the method in [5]ds = 0.1725, while leature739 ];'0; th_?h_strl_ng anbd wind fan:jlhes_, reaching for thed
the average error rate of the proposed methqi is- 0.1465. fatter L O.d IS dls' to be expected, fsmce or(;setsd cregte
Taking into account that the test set size— 1829 and '°f StfNg and wind instruments are often produced using

considering 95% confidence: (= 0.05), it can be seen that constant excitation, with the only detectable change béing

o — p1 > zay/Zprs, Wherez, can be determined from tablesthe Pitch domain. Concerning the distinction between waste

of the Normal law €0; — 1.65). This indicates that the and middle-eastern instruments (which are the bowed string

peformance of the proposed method is statistically siganitic kemenge, the wind ney, and the pitched percussjve ud and

compared to that in [5]. taljbur), the reported .F—mejasure for the western instrsnent
For comparative purposes, experiments were also perfornlrb%;(?I the fused_descnptor 1S 8: iGS/Oo/and Fhe ;espe.ctl\g_e ;llj ' flh

using the method proposed by Bello et al. in [1]. The descrifl" e-eastern instruments IS 81.0%, as Is shown in Table

tor combining spectral and phase difference in the compl >r<1IS is to be expected, since onsets for the ney and kemence

domain was computed using the MIR Toolbox [30]. Overag;e oc_casionally not clearly defined and are more difficult to
the complex domain method reports an F-measure of 73. Oestlmated, even for a human annotator.
for the complete set, shown as COMP in Table Il. Although Addressing the performance depicted using fi& curves
the complex domain method reports results inferior to thod Fig. 7, it can be seen that the auditory group delay and
reported using the auditory spectral flux and group deldgp estimator exhibit higher precision rates compared to the
for the complete set, the results using the pitched pensaisspuditory spectral flux, which however compensates with éigh
set outperform all auditory spectrum-based and DFT-bast&fall values. For the pitched percussive set, the pretisio
approaches. The overall performance of the complex domé&gfched using the spectral flux and fused detectors reaches
approach can be attributed to the fact that the onsets 0% for a recall rate of about 50%, making them ideal for
the energy and phase-based functions are not aligned, sifeat tracking applications as in [9]. For the bowed strings
the phase-based approaches detect the actual start of Sfe @ precision rate of about 90% is reported for the fused
onset while energy_based approaches detect the |argegyengescript0r, for a recall of about 40%, which is also des@abl
increase in the attack part of the note. For pitched pengeisspince string onsets are the most difficult to detect. Alsmais
instruments however, the attack part of the musical tone HRly the group delay feature, a precision of 87% is reached
shorter length compared to eg. string instruments, henee fAr a recall rate of 38%. Finally, using th&, estimator for
two descriptors are aligned and reported rates tend to te hii€ wind instruments set a precision of 87% is reported for a
As far as the performance evaluation of the three instruméggall of 69%, making theé estimator also suitable for beat
families is concerned, it can be seen that the best rateti@cking applications for wind instruments.
achieved by the auditory spectral flux for the pitched percus Some discussion on the performance of the various datasets
sive set, reaching 84.4%. However, the SF reports much loweported in the literature should follow. For the pitchedno
rates for the bowed string and wind families. Comparing thgercussive and pitched percussive sets employed in [1], [2]
performance of the DFT-based spectral flux and the auditd8], reported rates reach 98.4% in terms of F-measure for
spectral flux for the pitched percussive set, it can be see pitched percussive data and 96.3% for the pitched non-
that the former slightly outperforms the latter, which capercussive data. However, it should be noted that the datase
be attibuted to the lower spectral resolution of the auglitois less diverse, with the pitched percussive set consistithg
spectrum compared to the DFT. The auditory group delay piano and guitar recordings and the pitched non-peregssi
(GRD) results are roughly the same compared to the specsat consisting of solo violin recordings, thus making a ctire
flux for each instrument family, however the onsets derived ltomparison of the rates between the two datasets impossible
the two descriptors are not identical, as is demonstrated by.ikewise, the pitch-based method proposed in [4] employs a
fusion of the two aforementioned features: the best refdortdataset consisting of strings and singing voices with wibra
F-measure reaches 80.4% for the complete set, while thesent, with a reported F-measure reaching 59.9% [31]s,Thu
rates for the three instrument families are 74.5%, 88.49%, aa fair comparison between onset detection methods can only
78.0%. It can be seen that the reported rate for the pitchieel made using the same dataset.
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Fig. 7. Performance curves of the various onset detectisorii¢ors. Recall and Precision values are plotted on thdrdal and vertical axis, respectively.
A circle marker for each descriptor indicates the Recadlefion pair which is closer to the upper left corner of thegdam.

V. CONCLUSIONS is dependent on the instrument family may possibly lead to
proved results, as has been argued in previous MIREX
mpetitions. The system could also consider onsets peatuc
y non-pitched percussive instruments, which can be easily
tected using energy descriptors. Finally, performandess

In this paper, an approach for detecting onsets of pitcth
instrument recordings using auditory spectra was propos
The group delay function and the spectral flux were derived f

the auditory framework, and a novel fundamental frequen ; . .
ch as vibrato and ornamentations need to be taken into

estimation algorithm using auditory spectra was present i f ion in th i f a truly robuseb
Experiments performed on a diverse dataset of pitched ficcount for suppression in the creation of a truly robuseons

strument recordings indicate that the auditory l‘eatura.fzsrvshde'[ectlon system.
an improvement over standard state-of-the-art approdches
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